a
r
Xi
v
:
m
a
t
h
/
0
3
0
7
0
9
0
v
1
[
m
a
t
h.
G
M]
8
J
u
l
2
0
0
3
KIMS-2003-07-07
DoesChurch-KleeneordinalωCK
1
exist?
HitoshiKitada
GraduateSchoolofMathematicalSciences
UniversityofTokyo
Komaba,Meguro-ku,Tokyo153-8914,Japan
e-mail:kitada@
July7,2003
Abstract:Aquestionispropodifanonrecursiveordinal,theso-calledChurch-Kleene
ordinalωCK
1
reallyexists.
WeconsiderthesystemsS(α)definedin[2].
Let˜q(α)denotetheG¨odelnumberofRosrformulaoritsnegation
A
(α)
(=A
q(α)(q(α))or¬A
q(α)(q(α))),iftheRosrformulaA
q(α)(q(α))is
well-defined.
By“recursiveordinals”wemeanthodefinedbyRogers[4].Thenthat
αisarecursiveordinalmeansthatα<ωCK
1
,whereωCK
1
istheChurch-
Kleeneordinal.
ber˜q(α)isrecursivelydefinedforcountablerecursive
ordinalsα<ωCK
1
.Here‘recursivelydefined’meansthat˜q(α)isdefined
inductivelystartingfrom0.
ginalmeaningof‘recursive’is‘inductive.’Themean-
ingoftheword‘recursive’inthefollowingistheonethatmatchesthe
spiritofKleene[3](especially,thespiritoftheinductiveconstructionof
metamathematicalpredicatesdescribedinction51of[3]).
l-definednessof˜q(0)isassuredbyRosr-G¨odeltheoremas
explainedin[2].
Wemakeaninductionhypothesisthatforeachδ<α,theG¨odelnum-
ber˜q(γ)oftheformulaA
(γ)
(=A
q(γ)(q(γ))or¬A
q(γ)(q(γ)))withγ≤δis
recursivelydefinedforγ≤δ.
1
WewanttoprovethattheG¨odelnumber˜q(γ)isrecursivelywell-defined
forγ≤α.
i)Whenα=δ+1,byinductionhypothesiswecandeterminerecursively
whetherornotagivenformulaA
r
withG¨odelnumberriqualtoone
oftheaxiomformulasA
(γ)
(γ≤δ)ofS(α).Infact,wehaveonlytoe,
forafinitenumberofγ’swith˜q(γ)≤randγ≤δ,ifwehaveA
(γ)
=A
r
ctionhypothesisthat˜q(γ)isrecursivelywell-definedfor
γ≤δ,thisisthendecidedrecursively.
ThusG¨odelpredicateA(α)(a,b)andRosrpredicateB(α)(a,c)with
superscriptαarerecursivelydefined,andhencearenumeralwiexpress-
ibleinS(α).ThentheRosrformulaA
q(α)(q(α))iswell-defined,andthe
G¨odelnumber˜q(α)ofRosrformulaoritsnegationA
(α)
(=A
q(α)(q(α))
or¬A
q(α)(q(α)))isdefi˜q(γ)isrecursivelywell-defined
forγ≤α.
ii)Ifαisacountablerecursivelimitordinal,thenthereisanincreasing
quenceofrecursiveordinalsα
n
<αsuchthat
α=
∞
本文发布于:2022-11-22 16:49:27,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/90/360.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |