一种基于深度学习的压缩感知磁共振图像快速重建方法与流程
1.本发明涉及深度学习与医学图像处理技术领域,具体涉及一种基于深度学习的压缩感知磁共振图像快速重建方法。
背景技术:
2.基于压缩感知理论,利用信号本身的稀疏性,在非相干采样条件下,即便在不满足奈奎斯特采样定理的条件下,也能使用较少的k空间数据结合最优化算法基本还原出原始图像。因此,将k空间的采样轨迹设计为非相干的欠采样轨迹,就可以将压缩感知理论用于磁共振图像的加速采集与重建。对于mri来说,这意味着可以在确保满足图像诊断要求的情况下,显著减少k空间采集数据的行数,从而减少采样时间。其意义是非常重大的,所以压缩感知技术诞生之初就被应用在mri中。近几年来,国内外的诸多科研机构在cs-mri领域开展了大量工作:在应用领域上,压缩感知技术被广泛地应用到许多高级成像应用中,包括神经纤维束追踪、加速水脂分离、多维波谱成像、磁化率成像等;而在方法研究上,人们也提出了各种不同的优化重建算法,如非线性共轭梯度、迭代阈值、分裂bregman、字典学习等,并将各种变换与各种关于磁共振成像的先验知识应用到图像重建过程中,同时对于压缩感知与现有的并行采集技术的结合进行了大量的探索。这些研究为压缩感知技术在mri上的应用奠定了良好的基础。
3.虽然现已出现u-net、gan、transformer以及残差、注意力机制、密集连接等网络和模块用于mri图像的快速重建,但是现有的方法大多数是在如fastmri等公共数据集上进行验证的,其对实际数据的适用性还需进一步考量。此外,对于数据一致性,即数据保真的研究,现有方法是将原始数据与重建数据进行合并,不能最大化还原原始信息。因此具有局限性。
技术实现要素:
4.本发明是为了解决上述问题而进行的,目的在于提供一种基于深度学习的压缩感知磁共振图像快速重建方法。
5.本发明提供了一种基于深度学习的压缩感知磁共振图像快速重建方法,具有这样的特征,包括以下步骤:s1:采集磁共振k空间原始数据,得到k空间原始数据k
fid
;s2:基于压缩感知理论构建欠采样模板mask,通过欠采样模板mask模拟欠采样k空间数据,得到欠采样k空间数据k
cs-fid
;s3:对k空间原始数据k
fid
和欠采样k空间数据k
cs-fid
进行逆傅里叶变换处理得到全采样图像i
img
与欠采样图像i
cs-img
,并对全采样图像i
img
与欠采样图像i
cs-img
进行归一化处理,并保留归一化参数;s4:基于unet构建重建网络,通过重建网络对归一化处理后的全采样图像i
img
与欠采样图像i
cs-img
进行处理得到重建图像i
recon
;s5:对重建图像i
recon
进行保真操作,得到保真图像i
data-consistency
。
6.在本发明提供的基于深度学习的压缩感知磁共振图像快速重建方法中,还可以具有这样的特征:在步骤s1中,k空间原始数据能够为任意部位、任意模态以及任意矩阵大小
的数据。
7.在本发明提供的基于深度学习的压缩感知磁共振图像快速重建方法中,还可以具有这样的特征:在步骤s2中,欠采样模板mask符合高斯分布,其第二主峰高度低于第一主峰高度。
8.在本发明提供的基于深度学习的压缩感知磁共振图像快速重建方法中,还可以具有这样的特征:在步骤s3中,全采样图像i
img
与欠采样图像i
cs-img
归一化处理后分布在[0,1]之间。
[0009]
在本发明提供的基于深度学习的压缩感知磁共振图像快速重建方法中,还可以具有这样的特征:在步骤s4中,重建网络包括编码层和解码层,编码层包含5个编码模块,每个模块由两个卷积层组成,其卷积核个数分别为32、64、128、256、512,解码层包含5个解码模块,每个模块由两个反卷积层组成,其卷积核个数分别为512、256、128、64、32,
[0010]
解码层中最后一个卷积层使用softmax激活函数,其余卷积层使用adam激活函数。
[0011]
进一步地,每一编码模块均有一解码模块与之对应,相对应的编码模块与解码模块进行跳跃连接。
[0012]
在本发明提供的基于深度学习的压缩感知磁共振图像快速重建方法中,还可以具有这样的特征:在步骤s4中,重建网络的输入层为欠采样图像i
cs-img
,输出层为全采样图像i
img
,输入层数据和输出层数据一一对应。
[0013]
在本发明提供的基于深度学习的压缩感知磁共振图像快速重建方法中,还可以具有这样的特征:步骤s5包括如下子步骤:s51,截取欠采样模板mask中心连续部分,得到低频欠采样矩阵mask
low
;s52,利用低频欠采样矩阵mask
low
对空间k原始数据k
fid
进行掩膜得到低频欠采样k空间矩阵k
cs-fid-low
,对低频欠采样k空间矩阵k
cs-fid-low
进行逆傅里叶变换得到低频欠采样图像i
cs-img-low
,求取低频欠采样图像i
cs-img-low
的第一相位角s53,利用归一化参数对重建图像i
recon
进行反归一化,并与第一相位角相乘恢复重建图像i
recon
的相位信息,得到复数图像i
recon-complex
;s54,对复数图像i
recon-complex
进行傅里叶变换得到重建后的k空间数据k
recon
,求取重建后的k空间数据k
recon
的第二相位角s55,利用欠采样模板mask对重建后的k空间数据k
recon
进行掩膜得到欠采样重建后的k空间数据k
cs-recon
;s56,将欠采样k空间数据k
cs-fid
的模值k
cs-fid-abs
与欠采样重建后的k空间数据k
cs-recon
的模值k
cs-recon-abs
进行线性回归操作,线性回归公式为k
cs-recon-abs
=a*k
cs-fid-abs
+b,得到线性回归系数斜率a和截距b的值;s57,使用斜率a和截距b对重建后的k空间数据k
recon
进行放缩,放缩公式为k
data-consistency
=(abs(k
recon
)-b)a,得到保真后的k空间数据k
data-consistency
;s58,保真后的k空间数据k
data-consistency
与第二相位角相乘恢复k空间的相位信息,得到保真后的复数k空间数据k
data-consistency-complex
,并将欠采样k空间数据k
cs-fid
中不为零的数据替换至保真后的复数k空间数据k
data-consistency-complex
中;s59,对保真后的复数k空间数据k
data-consistency-complex
进行逆傅里叶变换得到保真图像i
data-consistency
。
[0014]
发明的作用与效果
[0015]
根据本发明所涉及的基于深度学习的压缩感知磁共振图像快速重建方法,因为包括以下步骤:s1:采集磁共振k空间原始数据,得到k空间原始数据k
fid
;s2:基于压缩感知理论构建欠采样模板mask,通过欠采样模板mask模拟欠采样k空间数据,得到欠采样k空间数
据k
cs-fid
;s3:对k空间原始数据k
fid
和欠采样k空间数据k
cs-fid
进行逆傅里叶变换处理得到全采样图像i
img
与欠采样图像i
cs-img
,并对全采样图像i
img
与欠采样图像i
cs-img
进行归一化处理,并保留归一化参数;s4:基于unet构建重建网络,通过重建网络对归一化处理后的全采样图像i
img
与欠采样图像i
cs-img
进行处理得到重建图像i
recon
;s5:对重建图像i
recon
进行保真操作,得到保真图像i
data-consistency
。
[0016]
因此,本发明通过unet构建重建网络可以实现任意部位、任意模态以及任意矩阵大小的数据的磁共振图像快速重建,且本发明利用低频相位信息对重建图像进行相位恢复,使其可利用线性回归方法对重建后的数据进行保真,更能体现真实的数据分布,以及本发明具有计算精度高、时间快、鲁棒性好等优点,从而能够得到更可靠、更稳定的结果。
附图说明
[0017]
图1为本发明实施例中一种基于深度学习的压缩感知磁共振图像快速重建方法的流程图;
[0018]
图2为本发明实施例中欠采样模板mask的示意图;
[0019]
图3为本发明实施例中低频欠采样矩阵mask
low
的示意图;
[0020]
图4为本发明实施例中全采样图像i
img
的示意图;
[0021]
图5为本发明实施例中欠采样图像i
cs-img
的示意图;
[0022]
图6为本发明实施例中重建图像i
recon
的示意图;
[0023]
图7为本发明实施例中保真图像i
data-consistency
的示意图。
具体实施方式
[0024]
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,以下实施例结合附图对本发明一种基于深度学习的压缩感知磁共振图像快速重建方法作具体阐述。
[0025]
在本实施例中,提供了一种基于深度学习的压缩感知磁共振图像快速重建方法。
[0026]
图1为本发明一种基于深度学习的压缩感知磁共振图像快速重建方法的流程图。
[0027]
如图1所示,本实施例所涉及的基于深度学习的压缩感知磁共振图像快速重建方法包括以下步骤:
[0028]
s1:采集磁共振k空间原始数据,得到k空间原始数据k
fid
;
[0029]
在本实施例中,k空间原始数据能够为任意部位、任意模态以及任意矩阵大小的数据。
[0030]
图2为本发明实施例中欠采样模板mask的示意图。
[0031]
s2:基于压缩感知理论构建欠采样模板mask,通过欠采样模板mask模拟欠采样k空间数据,得到欠采样k空间数据k
cs-fid
;
[0032]
在本实施例中,欠采样模板mask符合高斯分布,且第二主峰的高度低于第一主峰的高度。
[0033]
s3:对k空间原始数据k
fid
和欠采样k空间数据k
cs-fid
进行逆傅里叶变换处理得到全采样图像i
img
与欠采样图像i
cs-img
,并对全采样图像i
img
与欠采样图像i
cs-img
进行归一化处理,并保留归一化参数;
[0034]
在本实施例中,全采样图像i
img
与欠采样图像i
cs-img
通过归一化公式对进行归一化处理,归一化处理后的全采样图像i
img
与欠采样图像i
cs-img
分布在[0,1]之间。式中:m
i,j
和m'
i,j
分别为位置(i,j)处的原始值和归一化后的值,m
min
与m
max
分别表示图像的最小值与最大值。
[0035]
s4:基于unet构建重建网络,通过重建网络对归一化处理后的全采样图像i
img
与欠采样图像i
cs-img
进行处理得到重建图像i
recon
;
[0036]
在本实施例中,重建网络的输入层为欠采样图像i
cs-img
,输出层为全采样图像i
img
,输入层数据和输出层数据一一对应。
[0037]
在本实施例中,重建网络包括编码层和解码层,编码层包含5个编码模块,每个模块由两个卷积层组成,其卷积核个数分别为32、64、128、256、512,解码层包含5个解码模块,每个模块由两个反卷积层组成,其卷积核个数分别为512、256、128、64、32,解码层中最后一个卷积层使用softmax激活函数,其余卷积层使用adam激活函数。
[0038]
进一步地,每一编码模块均有一解码模块与之对应,相对应的编码模块与解码模块进行跳跃连接。
[0039]
图3为本发明实施例中低频欠采样矩阵mask
low
的示意图。
[0040]
s5:对重建图像i
recon
进行保真操作,得到保真图像i
data-consistency
;
[0041]
在本实施例中,步骤s5通过如下子步骤对重建图像i
recon
进行保真操作:
[0042]
s51,截取欠采样模板mask中心连续部分,得到低频欠采样矩阵mask
low
;
[0043]
s52,利用低频欠采样矩阵mask
low
对空间k原始数据k
fid
进行掩膜得到低频欠采样k空间矩阵k
cs-fid-low
,对低频欠采样k空间矩阵k
cs-fid-low
进行逆傅里叶变换得到低频欠采样图像i
cs-img-low
,求取低频欠采样图像i
cs-img-low
的第一相位角
[0044]
s53,利用归一化参数对重建图像i
recon
进行反归一化,并与第一相位角相乘恢复重建图像i
recon
的相位信息,得到复数图像i
recon-complex
;
[0045]
s54,对复数图像i
recon-complex
进行傅里叶变换得到重建后的k空间数据k
recon
,求取重建后的k空间数据k
recon
的第二相位角
[0046]
s55,利用欠采样模板mask对重建后的k空间数据k
recon
进行掩膜得到欠采样重建后的k空间数据k
cs-recon
;
[0047]
s56,将欠采样k空间数据k
cs-fid
的模值k
cs-fid-abs
与欠采样重建后的k空间数据k
cs-recon
的模值k
cs-recon-abs
进行线性回归操作,线性回归公式为k
cs-recon-abs
=a*k
cs-fid-abs
+b,得到线性回归系数斜率a和截距b的值;
[0048]
s57,使用斜率a和截距b对重建后的k空间数据k
recon
进行放缩,放缩公式为k
data-consistency
=(abs(k
recon
)-b)a,得到保真后的k空间数据k
data-consistency
;
[0049]
s58,保真后的k空间数据k
data-consistency
与第二相位角相乘恢复k空间的相位信息,得到保真后的复数k空间数据k
data-consistency-complex
,并将欠采样k空间数据k
cs-fid
中不为零的数据替换至保真后的复数k空间数据k
data-consistency-complex
中;
[0050]
s59,对保真后的复数k空间数据k
data-consistency-complex
进行逆傅里叶变换得到保真
图像i
data-consistency
。
[0051]
综上,本发明基于磁共振原始k空间数据,提出图像预处理方法、重建方法以及图像保真算法,从而可以实现基于压缩感知磁共振图像的快速重建。
[0052]
本发明涉及的一种基于深度学习的压缩感知磁共振图像快速重建方法的效果能够通过以下实验进一步说明。
[0053]
一.实验数据
[0054]
脑部t1加权图像,具体参数为:tr=470ms,te=14.5ms,thickness=6mm,interval=1mm,nsa=2,fov=230*230,acquisition matrix=256*256,sw=45.5khz。
[0055]
二.仿真实验结果
[0056]
图4为本发明实施例中全采样图像i
img
的示意图,图5为本发明实施例中欠采样图像i
cs-img
的示意图,图6为本发明实施例中重建图像i
recon
的示意图,图7为本发明实施例中保真图像i
data-consistency
的示意图。
[0057]
通过图4和图5能够分别看出,欠采样的磁共振图像i
cs-img
存在严重伪影,不能区分组织信息;而通过图6可以看出,重建后的图像i
recon
已经恢复其相位信息,具有明显的可区分性。
[0058]
通过图6和图7能够看出,应用本发明提出的保真方法,重建后的图像又进一步增加了部分细节信息,最大限度的还原了全采样图像的细节。
[0059]
三、实验分析
[0060]
通过上述实验结果,我们可以得到以下结论:本发明通过unet构建重建网络可以实现任意部位、任意模态以及任意矩阵大小的数据的磁共振图像快速重建,且本发明利用低频相位信息对重建图像进行相位恢复,使其可利用线性回归方法对重建后的数据进行保真,更能体现真实的数据分布,以及本发明具有计算精度高、时间快、鲁棒性好等优点,从而能够得到更可靠、更稳定的结果。
[0061]
实施例的作用与效果
[0062]
根据本发明所涉及的基于深度学习的压缩感知磁共振图像快速重建方法,因为包括以下步骤:s1:采集磁共振k空间原始数据,得到k空间原始数据k
fid
;s2:基于压缩感知理论构建欠采样模板mask,通过欠采样模板mask模拟欠采样k空间数据,得到欠采样k空间数据k
cs-fid
;s3:对k空间原始数据k
fid
和欠采样k空间数据k
cs-fid
进行逆傅里叶变换处理得到全采样图像i
img
与欠采样图像i
cs-img
,并对全采样图像i
img
与欠采样图像i
cs-img
进行归一化处理,并保留归一化参数;s4:基于unet构建重建网络,通过重建网络对归一化处理后的全采样图像i
img
与欠采样图像i
cs-img
进行处理得到重建图像i
recon
;s5:对重建图像i
recon
进行保真操作,得到保真图像i
data-consistency
。
[0063]
因此,本发明通过unet构建重建网络可以实现任意部位、任意模态以及任意矩阵大小的数据的磁共振图像快速重建,且本发明利用低频相位信息对重建图像进行相位恢复,使其可利用线性回归方法对重建后的数据进行保真,更能体现真实的数据分布,以及本发明具有计算精度高、时间快、鲁棒性好等优点,从而能够得到更可靠、更稳定的结果。
[0064]
上述实施方式为本发明的优选案例,并不用来限制本发明的保护范围。
技术特征:
1.一种基于深度学习的压缩感知磁共振图像快速重建方法,其特征在于,包括以下步骤:s1:采集磁共振k空间原始数据,得到k空间原始数据k
fid
;s2:基于压缩感知理论构建欠采样模板mask,通过所述欠采样模板mask模拟欠采样k空间数据,得到欠采样k空间数据k
cs-fid
;s3:对所述k空间原始数据k
fid
和所述欠采样k空间数据k
cs-fid
进行逆傅里叶变换处理得到全采样图像i
img
与欠采样图像i
cs-img
,并对所述全采样图像i
img
与所述欠采样图像i
cs-img
进行归一化处理,并保留归一化参数;s4:基于unet构建重建网络,通过所述重建网络对归一化处理后的所述全采样图像i
img
与所述欠采样图像i
cs-img
进行处理得到重建图像i
recon
;s5:对所述重建图像i
recon
进行保真操作,得到保真图像i
data-consistency
。2.根据权利要求1所述的基于深度学习的压缩感知磁共振图像快速重建方法,其特征在于:在步骤s1中,所述k空间原始数据能够为任意部位、任意模态以及任意矩阵大小的数据。3.根据权利要求1所述的基于深度学习的压缩感知磁共振图像快速重建方法,其特征在于:在步骤s2中,所述欠采样模板mask符合高斯分布,其第二主峰高度低于第一主峰高度。4.根据权利要求1所述的基于深度学习的压缩感知磁共振图像快速重建方法,其特征在于:在步骤s3中,所述全采样图像i
img
与所述欠采样图像i
cs-img
归一化处理后分布在[0,1]之间。5.根据权利要求1所述的基于深度学习的压缩感知磁共振图像快速重建方法,其特征在于:在步骤s4中,所述重建网络包括编码层和解码层,所述编码层包含5个编码模块,每个模块由两个卷积层组成,其卷积核个数分别为32、64、128、256、512,所述解码层包含5个解码模块,每个模块由两个反卷积层组成,其卷积核个数分别为512、256、128、64、32,所述解码层中最后一个卷积层使用softmax激活函数,其余卷积层使用adam激活函数。6.根据权利要求5所述的基于深度学习的压缩感知磁共振图像快速重建方法,其特征在于:其中,每一所述编码模块均有一所述解码模块与之对应,相对应的所述编码模块与所述解码模块进行跳跃连接。7.根据权利要求1所述的基于深度学习的压缩感知磁共振图像快速重建方法,其特征在于:在步骤s4中,所述重建网络的输入层为所述欠采样图像i
cs-img
,输出层为所述全采样图像i
img
,所述输入层数据和所述输出层数据一一对应。8.根据权利要求1所述的基于深度学习的压缩感知磁共振图像快速重建方法,其特征在于:其中,步骤s5包括如下子步骤:
s51,截取所述欠采样模板mask中心连续部分,得到低频欠采样矩阵mask
low
;s52,利用所述低频欠采样矩阵mask
low
对所述空间k原始数据k
fid
进行掩膜得到低频欠采样k空间矩阵k
cs-fid-low
,对所述低频欠采样k空间矩阵k
cs-fid-low
进行逆傅里叶变换得到低频欠采样图像i
cs-img-low
,求取所述低频欠采样图像i
cs-img-low
的第一相位角s53,利用所述归一化参数对所述重建图像i
recon
进行反归一化,并与所述第一相位角相乘恢复所述重建图像i
recon
的相位信息,得到复数图像i
recon-complex
;s54,对所述复数图像i
recon-complex
进行傅里叶变换得到重建后的k空间数据k
recon
,求取所述重建后的k空间数据k
recon
的第二相位角s55,利用所述欠采样模板mask对所述重建后的k空间数据k
recon
进行掩膜得到欠采样重建后的k空间数据k
cs-recon
;s56,将所述欠采样k空间数据k
cs-fid
的模值k
cs-fid-abs
与所述欠采样重建后的k空间数据k
cs-recon
的模值k
cs-recon-abs
进行线性回归操作,线性回归公式为k
cs-recon-abs
=a*k
cs-fid-abs
+b,得到线性回归系数斜率a和截距b的值;s57,使用所述斜率a和所述截距b对所述重建后的k空间数据k
recon
进行放缩,放缩公式为k
data-consistency
=(abs(k
recon
)-b)/a,得到保真后的k空间数据k
data-consistency
;s58,所述保真后的k空间数据k
data-consistency
与所述第二相位角相乘恢复k空间的相位信息,得到保真后的复数k空间数据k
data-consistency-complex
,并将所述欠采样k空间数据k
cs-fid
中不为零的数据替换至所述保真后的复数k空间数据k
data-consistency-complex
中;s59,对所述保真后的复数k空间数据k
data-consistency-complex
进行逆傅里叶变换得到所述保真图像i
data-consistency
。
技术总结
本发明一种基于深度学习的压缩感知磁共振图像快速重建方法,包括:S1:采集磁共振K空间原始数据,得到K空间原始数据K
