混合动力车辆的控制方法以及混合动力车辆的控制装置与流程
1.本发明涉及混合动力车辆的控制方法以及混合动力车辆的控制装置。
背景技术:
2.例如,专利文献1中公开了如下结构,即,在v型内燃机的左右的储藏装置的各排气系统配置有能够通过通电而加热的带电加热器的催化剂(ehc)。各带电加热器的催化剂以并联方式与电池电连接,在v型内燃机的冷启动时利用来自电池的电进行通电。
3.在该专利文献1中,在电池的电压下降时,将针对上述2个带电加热器的催化剂中的被导入的废气的温度相对升高的带电加热器的催化剂的通电切断,容许针对剩余的带电加热器的催化剂的通电,由此使得针对电池的负载降低。
4.在专利文献1中,如果对带电加热器的催化剂通电,则相应地消耗电池的电能。即,在专利文献1中,为了补充由带电加热器的催化剂消耗的电能,在后来需要驱动内燃机而进行发电,总体上油耗有可能变差。
5.即,在专利文献1中,在将带电加热器的催化剂加热时,在抑制油耗变差这方面存有进一步改善的余地。
6.专利文献1:日本特开平6-129242号公报
技术实现要素:
7.关于本发明的混合动力车辆,如果在行驶中设置于内燃机的排气通路的电加热催化剂的催化剂温度小于或等于规定温度,则为了使上述电加热催化剂的温度升高,根据电池的电池soc而对针对上述电加热催化剂的通电、上述内燃机的驱动进行控制。
8.由此,本发明的混合动力车辆能够灵活运用基于电动运行(motoring)的电力消耗量而进行电加热催化剂的加热,能够缩短用于加热催化剂的内燃机的驱动时间,总的说来能够抑制车辆的油耗变差。
附图说明
9.图1是示意性地表示搭载于应用本发明的混合动力车辆的内燃机的系统结构的概略的说明图。
10.图2是表示针对岐管催化剂的通电、内燃机的驱动的控制的一个例子的时序图。
11.图3是表示混合动力车辆的控制流程的流程图。
具体实施方式
12.下面,基于附图对本发明的一个实施例进行详细说明。
13.图1是示意性地表示搭载于应用本发明的混合动力车辆的内燃机1的系统结构的概略的说明图。
14.搭载有内燃机1的混合动力车辆是作为车辆的动力而不使用内燃机1的所谓串联
混合动力车辆。即,本实施例的内燃机1专用于发电,能够发电的电动机2与其曲轴(未图示)连结。电动机2发电所得的电力对电池3充电。
15.关于搭载有内燃机1的本实施例的混合动力车辆,从电池3供给了电力的驱动用电动机(未图示)对驱动轮(未图示)进行旋转驱动。即,搭载有内燃机1的混合动力车辆能够在内燃机1的停止中进行自主行驶的ev行驶。
16.电动机2例如由对于转子而利用永磁体的同步型电机构成。电动机2将内燃机1中产生的旋转能量变换为电能,对电池3充电。例如,如果电池3的电池充电率即电池soc降低,则本实施例的混合动力车辆为了对电池3充电而驱动内燃机1,利用电动机2发电。
17.另外,电动机2还具有驱动内燃机1的功能,在内燃机1启动时作为起步电机而起作用。即,电动机2是发电电动机,能够将发电所得的电力供给至电池3,并且能够利用来自电池3的电力进行旋转驱动。
18.此外,电动机2发电所得的电力可以根据运转状态,例如不对电池3充电而是直接供给至上述驱动用电动机。另外,内燃机1例如可以利用与电动机2不同的专用的起步电机而启动。
19.进气通路4以及排气通路5与内燃机1连接。在排气通路5设置有作为对从内燃机1排出的排气进行净化的排气净化用的催化剂的岐管催化剂6以及地板下催化剂7。即,在内燃机1的排气通路5设置有排气净化用的多个催化剂,上述多个催化剂中的一个即岐管催化剂6成为电加热催化剂。
20.岐管催化剂6是具有电加热器8的电加热催化剂(ehc),例如由三元催化剂构成。换言之,岐管催化剂6例如是具有电加热器8的三元催化剂。
21.岐管催化剂6配置于发动机室内,与内燃机1接近。岐管催化剂6例如配置于排气岐管(未图示)的汇合部分的紧后方。岐管催化剂6与地板下催化剂7相比而容量更小。
22.岐管催化剂6是对电加热器8通电而升温的催化剂。针对电加热器8的通电由控制单元9控制。对电加热器8供给的电力的供给源是利用电动机2发电所得的电力而充电的电池3。
23.地板下催化剂7位于比岐管催化剂6更靠下游侧的位置,例如设置于相对于车辆的发动机室较大幅分离的车辆的地板下等位置。地板下催化剂7例如由三元催化剂构成,与岐管催化剂6相比而容量增大。
24.控制单元9是具有cpu、rom、ram以及输入输出接口的周知的电子计算机。
25.对岐管催化剂6的催化剂温度进行检测的催化剂温度传感器10等各种传感器类的检测信号输入至控制单元9。
26.控制单元9能够对电池3的充电余量相对于充电容量的比率即soc(state of charge)进行检测。即,控制单元9相当于能够对搭载于混合动力车辆的电池3的电池soc进行检测的电池soc检测部。
27.如果混合动力车辆进行ev行驶,则设置于排气通路5的排气净化用的催化剂即岐管催化剂6的温度降低。关于岐管催化剂6,如果催化剂温度降低而低于规定的激活温度,则排气的净化率降低。
28.在ev行驶中岐管催化剂6的温度降低的情况下,可以考虑使内燃机1启动而利用高温的排气将催化剂加热。
29.然而,为了加热催化剂,驱动内燃机1的时间越长,混合动力车辆的油耗越差。
30.利用来自电池3的电对岐管催化剂6的电加热器8通电,能够缩短为了加热催化剂而驱动内燃机1的时间。
31.但是,电池3对岐管催化剂6的电加热器8通电(供给电力)而使得电池soc降低。因此,为了对电池soc降低的电池3充电而在后来对内燃机1进行驱动。即,即使为了加热催化剂而对岐管催化剂6供给电力,后来也对内燃机1进行驱动而利用电动机2进行发电,总体上混合动力车辆的油耗变差。
32.这里,能够进行ev行驶的混合动力车辆要在效率良好的运转点对内燃机1进行驱动而发电。因此,关于能够进行ev行驶的混合动力车辆,在以低速行驶的场面下,由驱动用电动机消耗的电能(电力)较少,电池3的电池soc容易达到上限。
33.因此,如果电池3的电池soc超过上限,则控制单元9为了保护电池,对电动机2进行电动运行而消耗电池3的电能(电力),使得电池3的电池soc降低。
34.因此,在进行排气通路5上的催化剂即岐管催化剂6的加热的情况下,控制单元9根据电池3的电池soc而控制针对岐管催化剂6的电加热器8的通电、内燃机1的驱动。
35.由此,混合动力车辆能够灵活利用基于电动机2的电动运行的电力消耗量而进行岐管催化剂6的加热,总体上能够缩短用于加热催化剂的内燃机1的驱动时间。
36.即,在进行排气通路5上的催化剂加热的情况下,混合动力车辆根据电池3的电池soc而对岐管催化剂6的通电、内燃机1的驱动进行控制,从而能够抑制油耗恶化。
37.如果电池3的电池soc减少,则控制单元9为了对电池3充电而驱动内燃机1,进行基于电动机2的发电。
38.另外,如果在停止了内燃机1的驱动的车辆的ev行驶中岐管催化剂6的催化剂温度小于或等于预先设定的规定温度(规定的下限温度),则控制单元9为了以使岐管催化剂6实现激活、且达到规定的上限温度的方式使岐管催化剂6的温度升高,根据电池3的电池soc(电池充电率)对针对电加热器8(岐管催化剂6)的通电、内燃机1的驱动进行控制。即,控制单元9相当于根据电池3的电池soc(电池充电率)而对针对岐管催化剂6的通电、内燃机1的驱动进行控制的控制部。
39.在电池3的电池soc较高时,控制单元9对岐管催化剂6通电,并且驱动内燃机1,由此使岐管催化剂6升温。
40.详细而言,在电池3的电池soc小于规定的第1阈值(soc上限阈值)且大于或等于规定的第2阈值(soc下限阈值)时,控制单元9对岐管催化剂6的电加热器8通电,并且驱动内燃机1,由此使岐管催化剂6升温。第1阈值是大于第2阈值的值。
41.在积蓄于电池3的电能剩余的情况下(电池soc较高的情况下),对岐管催化剂6通电,从而缩短为了岐管催化剂6的升温而驱动内燃机1的时间。
42.在对岐管催化剂6的电加热器8通电的情况下,控制单元9可以根据电池3的电池soc而使电加热器8的加热器输出变化。例如,在电池3的电池soc较高的情况下,与电池3的电池soc较低时相比,可以增大电加热器8的加热器输出。
43.在通过针对电加热器8的通电以及内燃机1的驱动而使岐管催化剂6升温的情况下,如果电池3的电池soc高,则可以增大电加热器8的输出,与此相应地减小内燃机1的输出。
44.另外,在通过针对电加热器8的通电以及内燃机1的驱动而使岐管催化剂6升温的情况下,如果电池3的电池soc低,则可以减小电加热器8的输出,与此相应地增大内燃机1的输出。
45.在电池3的电池soc较低时,控制单元9通过驱动内燃机1而使岐管催化剂6升温。
46.详细而言,在电池3的电池soc小于规定的第2阈值时,控制单元9不对电加热器8通电而是驱动内燃机1而使岐管催化剂6升温。
47.在积蓄于电池3的电能降低的情况下(电池soc较低的情况下),不对岐管催化剂6通电而是驱动内燃机1使岐管催化剂6升温。
48.在电池3的电池soc较高时,控制单元9对岐管催化剂6通电而使岐管催化剂6升温,并且利用电动机2使内燃机1进行电动运行。
49.详细而言,在电池3的电池soc大于或等于规定的第1阈值时,控制单元9对岐管催化剂6通电而使岐管催化剂6升温,并且利用电动机2使内燃机1进行电动运行。
50.利用电动机2使内燃机1进行电动运行,从而能够高效地将电加热器8产生的热向下游侧传导,并且能够以不使电池3的电池soc过度升高的方式适当地消耗电池3的电力。
51.图2是表示与电池3的电池soc相应的针对岐管催化剂6的通电、内燃机1的驱动的控制的一个例子的时序图。
52.在图2的时刻t1,电池3的电池soc超过第1阈值,因此停止内燃机1的驱动,开始电动机2的电动运行(内燃机1的电动运行)。
53.在图2的时刻t2,电池3的电池soc低于第1阈值,因此结束电动机2的电动运行(内燃机1的电动运行),重新开始内燃机1的驱动。
54.在图2的时刻t3,电池3的电池soc超过第1阈值,因此停止内燃机1的驱动,开始电动机2的电动运行(内燃机1的电动运行)。
55.在图2的时刻t4,岐管催化剂6的温度(bed温度)小于或等于规定的下限温度,因此开始针对岐管催化剂6的电加热器8的通电,结束电动机2的电动运行(内燃机1的电动运行)并重新开始内燃机1的驱动。
56.在图2的时刻t5,岐管催化剂6的温度(bed温度)达到规定的上限温度,因此停止针对岐管催化剂6的电加热器8的通电,停止内燃机1的驱动。
57.在图2的时刻t6、t8,岐管催化剂6的温度(bed温度)小于或等于规定的下限温度,但电池3的电池soc未超过第2阈值,因此不进行针对岐管催化剂6的电加热器8的通电,重新开始内燃机1的驱动。
58.在图2的时刻t7、t9,岐管催化剂6的温度(bed温度)达到规定的上限温度,因此停止内燃机1的驱动。
59.图3是表示上述实施例的混合动力车辆的控制的流程的流程图。
60.在步骤s1中,判定岐管催化剂6的催化剂温度是否小于或等于规定的下限温度。在步骤s1中,如果催化剂温度小于或等于规定的下限温度则进入步骤s2。
61.在步骤s2中,判定电池3的电池soc是否大于或等于soc上限阈值(第1阈值)。在步骤s2中,如果电池soc大于或等于soc上限阈值(第1阈值)则进入步骤s3。在步骤s2中,如果电池soc未大于或等于soc上限阈值(第1阈值)则进入步骤s4。
62.在步骤s3中,对岐管催化剂6的电加热器8通电,使内燃机1进行电动运行。
63.在步骤s4中,判定电池3的电池soc是否大于或等于soc下限阈值(第2阈值)。在步骤s4中,如果电池soc大于或等于soc下限阈值(第2阈值)则进入步骤s5。在步骤s4中,如果电池soc未大于或等于soc下限阈值(第2阈值)则进入步骤s6。
64.在步骤s5中,对岐管催化剂6的电加热器8通电,驱动内燃机1。
65.在步骤s6中,不对岐管催化剂6的电加热器8通电而驱动内燃机1。
66.此外,如果岐管催化剂6的催化剂温度达到规定的上限温度,则结束针对电加热器8的通电、基于内燃机1的驱动的岐管催化剂6的加热。
67.以上对本发明的具体的实施例进行了说明,但本发明并不限定于上述实施例,可以在不脱离其主旨的范围进行各种变更。
68.例如,如果能够进行ev行驶,则本发明还可以应用于除了上述串联混合动力车辆以外的混合动力车辆(例如所谓并联混合动力车辆)。
69.上述实施例涉及混合动力车辆的控制方法以及混合动力车辆的控制装置。
技术特征:
1.一种混合动力车辆的控制方法,该混合动力车辆具有:内燃机,其具有排气通路;电动机,其能够通过对上述内燃机进行驱动从而发电;电池,其能够利用上述电动机发电所得的电力而充电;以及电加热催化剂,其设置于上述排气通路,利用来自上述电池的电进行通电而发热,该混合动力车辆能够在上述内燃机的停止中行驶,其中,如果在行驶中上述电加热催化剂的催化剂温度小于或等于规定温度,则为了使上述电加热催化剂的温度升高,根据上述电池的电池soc而对针对上述电加热催化剂的通电、上述内燃机的驱动进行控制。2.根据权利要求1所述的混合动力车辆的控制方法,其中,在上述电池的电池soc较高时,对上述电加热催化剂通电,并且驱动上述内燃机,从而使上述电加热催化剂升温。3.根据权利要求2所述的混合动力车辆的控制方法,其中,上述电加热催化剂的加热器输出根据上述电池的电池soc而发生变化。4.根据权利要求1或2所述的混合动力车辆的控制方法,其中,在上述电池的电池soc较低时,驱动上述内燃机从而使上述电加热催化剂升温。5.根据权利要求1所述的混合动力车辆的控制方法,其中,在上述电池的电池soc较高时,对上述电加热催化剂通电而使上述电加热催化剂升温,并且利用上述电动机对上述内燃机进行电动运行驱动。6.一种混合动力车辆的控制装置,该混合动力车辆能够在具有排气通路的内燃机的停止中行驶,其中,所述混合动力车辆的控制装置具有:电动机,其能够通过驱动上述内燃机而发电,与上述内燃机连结;电池,其能够利用上述电动机发电所得的电力而充电;电加热催化剂,其设置于上述排气通路,利用来自上述电池的电进行通电而发热;以及控制部,如果在行驶中上述电加热催化剂的催化剂温度小于或等于规定温度,则该控制部为了使上述电加热催化剂的温度升高,根据上述电池的电池soc而对针对上述电加热催化剂的通电、上述内燃机的驱动进行控制。
技术总结
在进行排气通路(5)上的催化剂即岐管催化剂(6)的加热的情况下,控制单元(9)根据电池(3)的电池SOC而控制对岐管催化剂(6)的电加热器(8)的通电、内燃机(1)的驱动。由此,混合动力车辆能够灵活运用基于电动机(2)的电动运行的电力消耗量而进行岐管催化剂(6)的加热,总体上能够缩短用于加热催化剂的内燃机(1)的驱动时间。时间。时间。
