本文作者:kaifamei

基于机器学习获得地质灾害预警关键参数预测值的方法

更新时间:2025-12-21 17:51:50 0条评论

基于机器学习获得地质灾害预警关键参数预测值的方法



1.本发明涉及地质灾害预测技术领域,具体涉及一种基于机器学习获得地质灾害预警关键参数预测值的方法。


背景技术:



2.世界上地质灾害多、危害严重的地区,各类地质灾害每年造成的伤亡达数千人,经济损失高达百亿元,建设可靠的地质灾害预警系统可以有效提升地质灾害预防能力,最大限度地减少地质灾害所造成的损失。地质灾害预警一般包含数据采集、数据传输、分析预测、发布预警与应急响应五个环节,任何一个环节发生故障均会导致整个地质灾害预警过程失效,从而造成严重损失。因此,降低地质灾害预警系统故障率,增强预警系统可靠性具有非常重要的意义。
3.目前,降低地质灾害预警系统故障率的手段主要是为系统关键环节增加备份,比如说增加传感器数量以保证数据采集环节的可靠性,使用多种传输手段以保证数据传输环节的可靠性,使用多种阈值保证分析预测环节的可靠性等,这种增加系统冗余以降低地质灾害预警系统故障率的方式,在一定程度上能够提升地质灾害预警系统的可靠性。然而,这种方式也存在明显的弊端:一方面,为地质灾害预警系统每个环节增加冗余会造成地质灾害预警成本的大幅提升;另一方面,如果遇到极端事件或恶劣的环境条件,由于电力缺失、断网等因素,这种关键环节增加备份的方式也不能保证地质灾害预警系统的可靠性。综上,现有技术难以降低地质灾害预警系统的故障率。


技术实现要素:



4.本发明提供一种基于机器学习获得地质灾害预警关键参数预测值的方法,解决了现有技术难以降低地质灾害预警系统故障率的技术问题。
5.本发明提供的基础方案为:基于机器学习获得地质灾害预警关键参数预测值的方法,包括:
6.s1、梳理地质灾害预警系统中目标地质灾害隐患点的监测参数;
7.s2、获取目标地质灾害隐患点监测参数的历史数据;
8.s3、把所有监测参数分成第一类监测参数与第二类监测参数,所述第一类监测参数为地质灾害发生的诱发因素,所述第二类监测参数为表征目标地质灾害隐患点稳定状态的关键因素;
9.s4、基于目标地质灾害隐患点监测参数的历史数据创建用于机器学习的数据集,将第一类监测参数的历史数据或实时数据作为输入,将第二类监测参数的实时数据作为输出,通过机器学习算法进行训练和预测,得到地质灾害预警关键参数预测值。
10.本发明的工作原理及优点在于:首先,把所有监测参数分成第一类监测参数与第二类监测参数,其中,第一类监测参数为地质灾害发生的诱发因素,第二类监测参数为表征目标地质灾害隐患点稳定状态的关键因素,以第一类监测参数的历史数据或实时数据作为
输入、将第二类监测参数的实时数据作为输出,通过机器学习算法进行训练和预测得到地质灾害预警关键参数预测值,在极端事件或恶劣环境条件下,例如电力缺失、断网等因素,即使数据采集与数据传输环节失效,由于仍然可以通过预测得到地质灾害预警关键参数预测值,可以防止地质灾害预警系统发生故障,从而降低地质灾害预警系统故障率,提升地质灾害预警系统的可靠性。
11.本发明在极端事件或恶劣环境条件下,即使数据采集与数据传输环节失效,仍然可以通过预测得到地质灾害预警关键参数预测值,防止地质灾害预警系统发生故障,解决了现有技术难以降低地质灾害预警系统的故障率的技术问题。
12.进一步,s4中,所述第一类监测参数用ei表示,ei表示第i个独立监测参数,所述第二类监测参数用oj表示,oj表示第j个关键参数,通过机器学习算法对ei和oj的相关性进行分析和校验,并选择与oj具有较强相关性的ei作为机器学习算法中的输入数据。
13.有益效果在于:以与oj具有较强相关性的ei作为机器学习算法中的输入数据,能够提高机器学习算法分析和校验ei和oj的相关性的精确度与效率。
14.进一步,s4中,所述通过机器学习算法对ei和oj的相关性进行分析和校验,并选择与oj有较强相关性的ei作为机器学习算法中的输入数据,具体包括:
15.a1、对于某一个第二类监测参数o,根据地质学基础理论与工程经验判断可能对第二类监测参数o有影响的第一类监测参数ei;
16.a2、根据地质学基础理论与工程经验,选取一个或多个第一类监测参数ei与第二类监测参数o构建k个数据组合,表示为gk{ei,o},k表示第k个数据组合;
17.a3、对于任意一个数据组合gk{ei,o},将ei作为自变量,o作为因变量,建立线性或非线性回归模型,并计算回归模型的相关系数和残差平方和;
18.a4、对比k个数据组合gk{ei,o}回归模型的相关系数和残差平方和,选取相关系数最大且残差平方和最小的数据组合go{ei,o}作为最优数据组合,最优数据组合中的ei即为与第二类监测参数o相关性最强的一个或多个独立监测参数,将ei作为机器学习算法中第二类监测参数o的作为输出数据时的输入数据;
19.a5、对于第j个第二类监测参数oj,重复a1~a4,得到第二类监测参数oj的最优数据组合goj{ei,o}。
20.有益效果在于:由于最优数据组合中的ei是从相关系数最大且残差平方和最小的数据组合go{ei,o}中选取的,能够确保最优数据组合中的ei与oj具有较强相关性。
21.进一步,s4中,所述通过机器学习算法进行训练,包括:
22.b1、对于某一个特定的第二类监测参数o,以最优数据组合go{ei,o}中的第一类监测参数ei作为机器学习算法输入数据,第二类监测参数o作为输出数据,构建机器学习模型mo对数据进行训练;
23.b2、优化机器学习模型mo中的参数;
24.b3、得到训练好的机器学习模型mo;
25.b4、对于第j个第二类监测参数oj,重复b1~b3,得到第二类监测参数oj的机器学习模型moj。
26.有益效果在于:优化机器学习模型mo中的参数,并以优化后的机器学习模型mo进行训练,能够提高训练的精确度。
27.进一步,所述s4中,所述通过机器学习算法进行预测,具体为,利用已经训练好的机器学习模型对第二类监测参数oj的实时数据ojrt进行预测,包括:
28.c1、对某一特定的第二类监测参数o,基于获得的最优数据组合go{ei,o}创建用于预测第二类关键参数o实时数据的输入数据集合{eirt},eirt表示第i个用于预测第二监测参数o实时数据的独立监测参数;
29.c2、将数据集合{eirt}输入训练好的机器学习模型mo;
30.c3、返回第二监测参数o的实时预测结果ort;
31.c4、对于第j个第二监测参数oj,重复c1~c3,得到第二关键参数oj的实时预测结果ojrt。
32.有益效果在于:这样得到的二关键参数oj的实时预测结果ojrt,在数据采集环节或数据传输环节失效时进行采用,能够降低地质灾害预警系统故障率。
33.进一步,s4中,所述地质灾害预警关键参数预测值用于地质灾害预警系统数据采集环节或数据传输环节失效时,分析预测地质灾害隐患点稳定状态。
34.有益效果在于:当地质灾害预警系统数据采集环节或数据传输环节没有失效时,可不采用地质灾害预警关键参数预测值,仅在数据采集环节或数据传输环节失效时才采用,这样能够在保证降低地质灾害预警系统故障率的同时简化数据传输流程。
35.进一步,s4中,所述机器学习算法是决策树、支持向量机、神经网络中的一种。
36.有益效果在于:也就是说,包括但不限于决策树、支持向量机或者神经网络,这些算法成熟,故障率低,也便于实现。
37.进一步,s2中,获取目标地质灾害隐患点的监测参数的历史数据之后,对监测参数的历史数据进行预处理。
38.有益效果在于:比如去除数据噪声、删除异常数据等,以提高监测参数的历史数据的准确性与精确性。
附图说明
39.图1为本发明基于机器学习获得地质灾害预警关键参数预测值的方法实施例的流程图。
具体实施方式
40.下面通过具体实施方式进一步详细的说明:
41.实施例1
42.实施例基本如附图1所示,包括:
43.s1、梳理地质灾害预警系统中目标地质灾害隐患点的监测参数;比如说降雨量、温度、库水位高程、位移、裂缝宽度、孔隙水压力、地下水位、应力等。
44.s2、获取目标地质灾害隐患点监测参数的历史数据;获取目标地质灾害隐患点的监测参数的历史数据之后,对监测参数的历史数据进行预处理,包括去除数据噪声、删除异常数据等,以提高监测参数的历史数据的准确性与精确性。
45.s3、把所有监测参数分成第一类监测参数与第二类监测参数,所述第一类监测参数为地质灾害发生的诱发因素,比如说降雨量、库水位、温度等,该类数据是对目标地质灾
害隐患点环境条件的直接观测,不能直接用于识别地质灾害隐患点的稳定状态,而且有多种获取途径;所述第二类监测参数为表征目标地质灾害隐患点稳定状态的关键因素,比如说位移、孔隙水压力、地下水位、应力、裂缝宽度等,该类数据一般作为地质灾害预警系统中预警模型中的关键参数,该类数据的缺失将导致预警系统的失效。
46.s4、基于目标地质灾害隐患点监测参数的历史数据创建用于机器学习的数据集,将第一类监测参数的历史数据或实时数据作为输入,将第二类监测参数的实时数据作为输出,通过机器学习算法进行训练和预测,得到地质灾害预警关键参数预测值。
47.在本实施例中,所述机器学习算法可以采用决策树、支持向量机或者神经网络中的一种,也就是说,包括但不限于决策树、支持向量机或者神经网络,这些算法成熟,故障率低,也便于实现,具体的算法综合考虑目标地质灾害隐患点的监测内容、数据质量等实际情况进行选择。
48.作为方案的优选之一:s4中,所述第一类监测参数用ei表示,ei表示第i个独立监测参数,ei可以为第一类监测参数的实时数据,比如说实时的降雨量、降雨强度、温度、库水位高程等,也可以为第一类监测数据的历史数据或第一类监测数据在某一段时间的累计量,比如前1天的日降雨量、前5天的日降雨量、前5天的累计降雨量等;所述第二类监测参数用oj表示,oj表示第j个关键参数,比如位移、孔隙水压力、地下水位等;通过机器学习算法对ei和oj的相关性进行分析和校验,并选择与oj具有较强相关性的ei作为机器学习算法中的输入数据;以与oj具有较强相关性的ei作为机器学习算法中的输入数据,能够提高机器学习算法分析和校验ei和oj的相关性的精确度与效率。
49.作为方案的优选之一:s4中,所述通过机器学习算法对ei和oj的相关性进行分析和校验,并选择与oj有较强相关性的ei作为机器学习算法中的输入数据,具体包括:
50.a1、对于某一个第二类监测参数o,根据地质学基础理论与工程经验判断可能对第二类监测参数o有影响的第一类监测参数ei;
51.a2、根据地质学基础理论与工程经验,选取一个或多个第一类监测参数ei与第二类监测参数o构建k个数据组合,表示为gk{ei,o},k表示第k个数据组合;
52.a3、对于任意一个数据组合gk{ei,o},将ei作为自变量,o作为因变量,建立线性或非线性回归模型,并计算回归模型的相关系数和残差平方和;
53.a4、对比k个数据组合gk{ei,o}回归模型的相关系数和残差平方和,选取相关系数最大且残差平方和最小的数据组合go{ei,o}作为最优数据组合,最优数据组合中的ei即为与第二类监测参数o相关性最强的一个或多个独立监测参数,将ei作为机器学习算法中第二类监测参数o的作为输出数据时的输入数据;
54.a5、对于第j个第二类监测参数oj,重复a1~a4,得到第二类监测参数oj的最优数据组合goj{ei,o}。
55.作为方案的优选之三:s4中,所述通过机器学习算法进行训练,包括:
56.b1、对于某一个特定的第二类监测参数o,以最优数据组合go{ei,o}中的第一类监测参数ei作为机器学习算法输入数据,第二类监测参数o作为输出数据,构建机器学习模型mo对数据进行训练;
57.b2、优化机器学习模型mo中的参数;
58.b3、得到训练好的机器学习模型mo;
59.b4、对于第j个第二类监测参数oj,重复b1~b3,得到第二类监测参数oj的机器学习模型moj。
60.作为方案的优选之四:所述s4中,所述通过机器学习算法进行预测,具体为,利用已经训练好的机器学习模型对第二类监测参数oj的实时数据ojrt进行预测,包括:
61.c1、对某一特定的第二类监测参数o,基于获得的最优数据组合go{ei,o}创建用于预测第二类关键参数o实时数据的输入数据集合{eirt},eirt表示第i个用于预测第二监测参数o实时数据的独立监测参数;
62.c2、将数据集合{eirt}输入训练好的机器学习模型mo;
63.c3、返回第二监测参数o的实时预测结果ort;
64.c4、对于第j个第二监测参数oj,重复c1~c3,得到第二关键参数oj的实时预测结果ojrt。
65.在本实施例中,首先,把所有监测参数分成第一类监测参数与第二类监测参数,其中,第一类监测参数为地质灾害发生的诱发因素,第二类监测参数为表征目标地质灾害隐患点稳定状态的关键因素,以第一类监测参数的历史数据或实时数据作为输入、将第二类监测参数的实时数据作为输出,通过机器学习算法进行训练和预测得到地质灾害预警关键参数预测值,在极端事件或恶劣环境条件下,例如电力缺失、断网等因素,即使数据采集与数据传输环节失效,由于仍然可以通过预测得到地质灾害预警关键参数预测值,可以防止地质灾害预警系统发生故障,从而降低地质灾害预警系统故障率,提升地质灾害预警系统的可靠性。
66.实施例2
67.与实施例1不同之处仅在于,s4中,所述地质灾害预警关键参数预测值用于地质灾害预警系统数据采集环节或数据传输环节失效时,分析预测地质灾害隐患点稳定状态。当地质灾害预警系统数据采集环节或数据传输环节没有失效时,可不采用地质灾害预警关键参数预测值,仅在数据采集环节或数据传输环节失效时才采用,这样能够在保证降低地质灾害预警系统故障率的同时简化数据传输流程。
68.以上所述的仅是本发明的实施例,方案中公知的具体结构及特性等常识在此未作过多描述,所属领域普通技术人员知晓申请日或者优先权日之前发明所属技术领域所有的普通技术知识,能够获知该领域中所有的现有技术,并且具有应用该日期之前常规实验手段的能力,所属领域普通技术人员可以在本技术给出的启示下,结合自身能力完善并实施本方案,一些典型的公知结构或者公知方法不应当成为所属领域普通技术人员实施本技术的障碍。应当指出,对于本领域的技术人员来说,在不脱离本发明结构的前提下,还可以作出若干变形和改进,这些也应该视为本发明的保护范围,这些都不会影响本发明实施的效果和专利的实用性。本技术要求的保护范围应当以其权利要求的内容为准,说明书中的具体实施方式等记载可以用于解释权利要求的内容。

技术特征:


1.基于机器学习获得地质灾害预警关键参数预测值的方法,其特征在于,包括:s1、梳理地质灾害预警系统中目标地质灾害隐患点的监测参数;s2、获取目标地质灾害隐患点监测参数的历史数据;s3、把所有监测参数分成第一类监测参数与第二类监测参数,所述第一类监测参数为地质灾害发生的诱发因素,所述第二类监测参数为表征目标地质灾害隐患点稳定状态的关键因素;s4、基于目标地质灾害隐患点监测参数的历史数据创建用于机器学习的数据集,将第一类监测参数的历史数据或实时数据作为输入,将第二类监测参数的实时数据作为输出,通过机器学习算法进行训练和预测,得到地质灾害预警关键参数预测值。2.如权利要求1所述的基于机器学习获得地质灾害预警关键参数预测值的方法,其特征在于,s4中,所述第一类监测参数用ei表示,ei表示第i个独立监测参数,所述第二类监测参数用oj表示,oj表示第j个关键参数,通过机器学习算法对ei和oj的相关性进行分析和校验,并选择与oj具有较强相关性的ei作为机器学习算法中的输入数据。3.如权利要求2所述的基于机器学习获得地质灾害预警关键参数预测值的方法,其特征在于,s4中,所述通过机器学习算法对ei和oj的相关性进行分析和校验,并选择与oj有较强相关性的ei作为机器学习算法中的输入数据,具体包括:a1、对于某一个第二类监测参数o,根据地质学基础理论与工程经验判断可能对第二类监测参数o有影响的第一类监测参数ei;a2、根据地质学基础理论与工程经验,选取一个或多个第一类监测参数ei与第二类监测参数o构建k个数据组合,表示为gk{ei,o},k表示第k个数据组合;a3、对于任意一个数据组合gk{ei,o},将ei作为自变量,o作为因变量,建立线性或非线性回归模型,并计算回归模型的相关系数和残差平方和;a4、对比k个数据组合gk{ei,o}回归模型的相关系数和残差平方和,选取相关系数最大且残差平方和最小的数据组合go{ei,o}作为最优数据组合,最优数据组合中的ei即为与第二类监测参数o相关性最强的一个或多个独立监测参数,将ei作为机器学习算法中第二类监测参数o的作为输出数据时的输入数据;a5、对于第j个第二类监测参数oj,重复a1~a4,得到第二类监测参数oj的最优数据组合goj{ei,o}。4.如权利要求3所述的基于机器学习获得地质灾害预警关键参数预测值的方法,其特征在于,s4中,所述通过机器学习算法进行训练,包括:b1、对于某一个特定的第二类监测参数o,以最优数据组合go{ei,o}中的第一类监测参数ei作为机器学习算法输入数据,第二类监测参数o作为输出数据,构建机器学习模型mo对数据进行训练;b2、优化机器学习模型mo中的参数;b3、得到训练好的机器学习模型mo;b4、对于第j个第二类监测参数oj,重复b1~b3,得到第二类监测参数oj的机器学习模型moj。5.如权利要求4所述的基于机器学习获得地质灾害预警关键参数预测值的方法,其特征在于,所述s4中,所述通过机器学习算法进行预测,具体为,利用已经训练好的机器学习
模型对第二类监测参数oj的实时数据ojrt进行预测,包括:c1、对某一特定的第二类监测参数o,基于获得的最优数据组合go{ei,o}创建用于预测第二类关键参数o实时数据的输入数据集合{eirt},eirt表示第i个用于预测第二监测参数o实时数据的独立监测参数;c2、将数据集合{eirt}输入训练好的机器学习模型mo;c3、返回第二监测参数o的实时预测结果ort;c4、对于第j个第二监测参数oj,重复c1~c3,得到第二关键参数oj的实时预测结果ojrt。6.如权利要求1-5任一项所述的基于机器学习获得地质灾害预警关键参数预测值的方法,其特征在于,s4中,所述机器学习算法是决策树、支持向量机、神经网络中的一种。7.如权利要求1-6任一项所述的基于机器学习获得地质灾害预警关键参数预测值的方法,其特征在于,s2中,获取目标地质灾害隐患点的监测参数的历史数据之后,对监测参数的历史数据进行预处理。

技术总结


本发明涉及地质灾害预测技术领域,具体涉及一种基于机器学习获得地质灾害预警关键参数预测值的方法,包括:S1、梳理地质灾害预警系统中目标地质灾害隐患点的监测参数;S2、获取目标地质灾害隐患点监测参数的历史数据;S3、把所有监测参数分成第一类监测参数与第二类监测参数;S4、基于目标地质灾害隐患点监测参数的历史数据创建用于机器学习的数据集,将第一类监测参数的历史数据或实时数据作为输入,将第二类监测参数的实时数据作为输出,通过机器学习算法进行训练和预测,得到地质灾害预警关键参数预测值。本发明解决了难以降低地质灾害预警系统的故障率的技术问题。害预警系统的故障率的技术问题。害预警系统的故障率的技术问题。


技术研发人员:

陈立川 康燕飞 陈结 徐洪 梁丹 李柏佚 杨勇 任晓虎

受保护的技术使用者:

重庆大学

技术研发日:

2022.08.30

技术公布日:

2022/11/25


文章投稿或转载声明

本文链接:http://www.wtabcd.cn/zhuanli/patent-1-56756-0.html

来源:专利查询检索下载-实用文体写作网版权所有,转载请保留出处。本站文章发布于 2022-12-22 14:27:10

发表评论

验证码:
用户名: 密码: 匿名发表
评论列表 (有 条评论
2人围观
参与讨论