
1/11下载文档可编辑
涡度、散度与垂直速度,是天气分析预报中
经常使用的三个物理量。在天气学教科书(例如:
朱乾根等,2000)与动力气象学教科书(例如:吕
美仲与彭永清,1990)中都有详尽介绍。本章内
容,主要取材于朱乾根等的教科书。
§7.1涡度的表达式
涡度是衡量空气质块转运动强度物理量,单位为s1。根据右手
定则,逆时针旋转时为正,顺时针旋转时为负。从动力学角度分析,
根据涡度的变化,就可了解气压系统的发生和发展。
更确切地说,我们这里的涡度是指相对涡度,其表达式为:
wvu
zyx
kji
3
V
k
y
u
x
v
j
y
w
z
u
i
z
v
y
w
)()()(
kji
(7.1.1)
其中)(
3
kwjviu
V是三维风矢。
虽然涡度是一个矢量,但在天气分析中,一般却只计算它的垂直
分量,亦即:相对涡度垂直分量或垂直相对涡度。的表达式为:
2/11下载文档可编辑
y
u
x
v
(7.1.2)
需要注意的是,在日常分析预报中说的涡度,其全称应是垂直
相对涡度。
将式(7.1.2)变微分为差分,得:
y
u
x
v
(7.1.3)
§7.1.2相对涡度的计算方法
犹如风矢有实测风与地转风一样,相对涡度有实测风涡度
o
与
地转风涡度
g
两种。下面分别介绍它们的计算方法。
1.实测风涡度
o
计算方法
用实测风计算涡度时要按照式(7.1.3)所列各项分别进行。首先
把实测风分解为u、v分量,然后分别读取图7.1.1所示的A、C点的
u值和B、D点的v值,最后代入式(7.1.3)即得O点的涡度:
y
uu
x
vv
CA
BD
o
(7.1.4)
图7.1.1计算物理量用的正方形网格(朱乾根等,2000)
2.地转风涡度
g
计算方法
3/11下载文档可编辑
假若实测风与地转风相差很小,那么,便可用地转风代替实测风,
并可根据地转风公式直接从高度场(或气压场)求算相对涡度。用地转
风计算得到的相对涡度称地转风涡度,也有人也简称地转涡度。
地转风涡度
g
的几何意义是代表等压面凹凸的程度。
把等压面上的地转风公式
x
H
f
v
y
H
f
u
g
g
8.9
8.9
(7.1.5)
代入式(7.1.2)中,略去地转参数f)sin2(的空间变化后,即可得
到地转风涡度
g
的表达式:
H
fy
H
x
H
fg
2
2
2
2
28.9
)(
8.9
(7.1.6)
上式中
H
为位势高度,H2为高度场的拉普拉斯。在实际业务中可用
图7.1.1所示网格进行计算,并把上式改写为差分形式:
)4(
8.9
8.9
2
2
ODCBA
COOABOOD
g
HHHHH
d
m
f
md
md
HH
md
HH
md
md
HH
md
HH
f
(7.1.7)
式中m为地图投影放大系数。由上式可见,读取网格上A、B、C、D、
O五点的高度值,代入式(7.1.7),便得O点的地转风涡度
g
。
§7.2散度的计算
(引自:朱乾根等《天气学原理与方法》(第3版)pp618~620)。
1.定义及表达式
散度是衡量速度场辐散、辐合强度的物理量,单位为1/s,辐散
4/11下载文档可编辑
时为正,辐合时为负。
水平散度的表达式为:
y
v
x
u
D
(7.2.1)
水平散度D的大小是从同一水平面(或等压面,请读者牢牢记住这个
条件)上的实测风场计算求得的。
2.计算方法
把式(7.2.1)写成差分形式:
y
v
x
u
D
(7.2.2)
若用图7.1.1所示网格计算水平散度,变微分为差分,则上式就改写
为:
md
vv
md
uu
DCA
BD
22
)(
2CABD
vvuu
d
m
(7.2.3)
式中d为在天气图上所取网格点的距离。这样把图7.1.1中B、D点
的u值和A、C点的v值代入式(7.2.3),便得O点的散度。
3.注意事项
当气象测站不在同一个海拔高度上时,地面图上散度的计算方
法,我们将在后面介绍。
关于对上面计算散度值的修正方法,将在§7.3介绍。
§7.3垂直速度的诊断
(引自:朱乾根等《天气学原理与方法》(第3版)pp620~635)。
大气垂直运动是天气分析和预报中必须经常考虑的一个重要物
5/11下载文档可编辑
理量。
需要提请读者注意的是,这里说的垂直速度(或运动),仅仅指大
尺度的。
垂直速度不是直接观测到的物理量,它是通过间接计算而得到
的。垂直速度的计算方法很多,下面只介绍O’Brie(1970)提出的运
动学法(积分连续方程法)。
1.计算原理
在),,(pyx坐标系中,连续方程可写为:
0
py
v
x
u
(7.3.1)
或)(
y
v
x
u
p
(7.3.2)
将上式两端对
p
积分得:
p
p
pp
dp
y
v
x
u
0
0
)(
))((
0
pp
y
v
x
u
(7.3.3)
令)(
y
v
x
u
D
为
0
p和p两层等压面之间的平均散度,则式(7.3.3)可
改写成:
)(
00
ppD
p
(7.3.4)
式中
p
和
0
分别为p和
0
p高度处的垂直速度。单位为shPa;正值为
下沉运动,负值则为上升运动。若平均散度D在
0
p和p两层之间的变
化是线性的,即:
6/11下载文档可编辑
)(
2
1
0
DDD,那么,在求得各层散度之后,根据式(7.3.4)便可自下
而上一层一层地算出各层的垂直速度来。
2.下边界条件
假定:(a)地面海拔高度很低,且是平坦的(读者要特别注意这个
假定),(b)hPap1000
0
处,0,则各主要等压面上的垂直速度可
分别用式(7.3.4)推算出来。
3.必须对和D进行修正的原因
原则上,可以用这种方法计算出任意层次的。但在实际上,用
这种方法来计算高层的常常很不准确。原因是:(a)风在高层观测
的精确度较低;(b)误差随高度有积累。上述原因的详细解释是,在
作散度计算时,既有风的观测、分析方面的误差,又有计算中带来的
误差,这些误差都随高度升高而有积累,从而导致的计算值的精确
度随高度升高而不断下降。结果到了气柱的顶部,的值往往不能满
足0
上界
的边界条件,这就违背了“补偿原理”。因此必须对上述运
动学方法或“补偿作用”进行修正。
4.对D和的修正
根据实际资料的分析,
D
的修正量可以假定为气压的线性函数。
即(证明略):
p
M
k
DD
TN
k
k
/)('(7.3.5)
式中
N
MNNkM
1
),1(
2
1
是一个只与总层数N有关的常数。
对
D
作了上述修正后,也应作相应的修正(证明略)。
7/11下载文档可编辑
)(
2
)1(
'
TNkkM
kk
(7.3.6)
其中,Nk,,2,1,是层次序号。
N
为需要计算的总层数,
N
是未经
修正的最高层垂直速度(一般即100hPa处的
9
),
N
是经过修正后的
最高层垂直速度。式(7.3.6)中的
N
是借用其它方法(例如绝热法等
方法)求出的。
实例分析表明,
N
一般都在3~shPa3105,最大可达20~
shPa31030。而由绝热法或其他方法求出的100hPa上的数值一般
很小(大约为0~shPa3105.0),因此
T
较之
N
是很小的。这样,在
精度允许的情况下,为了计算的方便,可取
T
0。这样,式(7.3.5)
与(7.3.6)便可简化成下列形式:
pM
k
DDN
kk
'
(7.3.7)
NkkM
kk
2
)1(
'
(7.3.8)
5.w与的换算关系
在很多情况下,人们需将上面计算出的)(dtdp换算成
)(dtdzw。例如,在计算z-螺旋度wh
z
时以及绘制垂直剖面图上
的环流时就遇到上述情况。
垂直速度在),,,(tpyx坐标系里为)(dtdp,在),,,(tzyx坐标系里
为)(dtdzw,两者有以下的关系:
8/11下载文档可编辑
z
p
wp
t
p
dt
dp
V
(7.3.9)
通常,式(7.3.9)的右边前两项之和很小,因此近似有:
z
p
w
dt
dp
~
(7.3.10)
代入静力学关系,则得:
gw
dt
dp
~
(7.3.11)
再代入状态方程,则得:
gw
TR
p
dt
dp
vd
~
(7.3.12)
式(7.3.12)即为与w的换算关系式。的单位多取sahP,w的单位
多取scm。
§7.4地转偏差与散度、垂直速度的关系
1.定义
地转风虽然可以作为实际风的近似,但一般情况下实际风和地转
风总是有差别的。为了量度实际风偏离地转风的程度,人们将实际风
与地转风的矢量差定义为地转偏差。令地转偏差用'V表示,则有:
g
VVV'
(7.4.1)
或
g
g
vvv
uuu
'
'
9/11下载文档可编辑
(7.4.2)
2.计算方法
考虑到有关教科书中地转风的定义式后,可将式(7.4.2)改写为:
)
1
(
)
1
(
'
'
xf
vv
yf
uu
(7.4.3)
将公式(7.4.3)变为差分形式,得:
)
1
(
)
1
(
'
'
xf
vv
yf
uu
(7.4.4)
根据式(7.4.4),可以计算出地转偏差矢量的两个分量'u与'v,进
而得到地转偏差矢量:
jviu
'''V(7.4.5)
3.地转偏差与水平散度、垂直速度的关系
将式(7.4.2)代入水平散度公式,得:
)()(''vv
y
uu
xy
v
x
u
D
gg
y
v
x
u
y
v
x
u
gg
''
(7.4.6)
若取f为常数,则有:
0)(
1
)(
1
xyfyxfy
v
x
u
gg
(7.4.7)
将式(7.4.7)代入(7.4.6),得:
y
v
x
u
y
v
x
u
D
'
(7.4.8)
10/11下载文档可编辑
式(7.4.8)表明,实际风的水平散度是由地转偏差决定的。由于垂直
运动与水平散度联系在一起,故可以认为垂直运动也与地转偏差有一
定联系。
4.地转偏差在动能制造转换中的作用
当有地转偏差时,若实际风偏向低压一侧,水平气压梯度力对空
气微团作功,其动能将增加;若实际风偏向高压一侧,空气微团反抗
水平气压梯度力作功,其动能将减小。因此,地转偏差对大气运动动
能的制造和转换起着重要作用。
5.地转偏差的大小
自由大气中地转偏差一般很小,地转偏差与地转风的比值平均为
20%左右。实际风偏离地转风的角度平均约为15°。地转偏差虽然很
小,但对大气运动的演变却起着极为重要的作用。有地转偏差时,空
气微团才可能作穿越等压线运动,从而引起质量重新分布,造成气压
场和风场的变化,所以地转偏差是天气系统演变的一个动力因子。
6.地转偏差与水平加速度的关系
可以证明(证明从略),地转偏差和水平加速度方向相垂直,在北
半球指向水平加速度的左侧,如图7.4.1所示。地转偏差的大小和水
11/11下载文档可编辑
平加速度成正比,和纬度的正弦成反比。
图7.4.1地转偏差与水平加速度关系
本文发布于:2023-03-09 02:57:29,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/zhishi/a/167830184919663.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:螺旋度.doc
本文 PDF 下载地址:螺旋度.pdf
| 留言与评论(共有 0 条评论) |