负数的意义

更新时间:2023-04-19 13:30:21 阅读: 评论:0

立冬吃啥-电梯事故

负数的意义
2023年4月19日发(作者:风过无痕)第一单元《认识负数》教材分析
在一至四年级的数学教材里,“数与代数”领域主要教学整数的知识,这些整数都是自
然数(0和正整数)。本单元教学负数,是过去小学数学里没有的内容。在小学数学里教学
负数的知识(只涉及负整数的初步认识)出于两点考虑:第一,负数在日常生活中的应用还
是比较多的,学生经常有机会在生活中看到负数。让他们学习一些负数的知识,有助于他们
理解生活中遇到的负数的具体含义,从而拓宽数学视野。第二,适量知道一些负数的知识,
扩展对整数的认识范围,能更好地理解自然数的意义。
《数学课程标准(实验稿)》对教学负数提出的具体目标是“在熟悉的生活情境中,理
解负数的意义,会用负数表示一些日常生活中的问题”。根据这一教学目标,本单元的教学
内容分两部分编排:第一部分是结合现实情境教学负数的意义,让学生初步认识负数,初步
能认、读、写负数;第二部分是负数的实际应用,引导学生应用正数和负数表示日常生活中
具有相反意义的数量,进一步体会负数的意义。练习一的第1~6题配合第一部分的教学,
第7~10题配合第二部分的教学。“你知道吗”介绍我国古代认识和使用负数的情况。本
单元结束时,还安排了一次实践活动《面积是多少》,回忆面积的意义、常用的面积单位、
长方形面积计算公式,初步建立图形的等积变形思想,培养转化策略,为教学平行四边形等
三个图形的面积打下扎实的基础。
1. 联系温度和海拔高度的表示方法,初步教学负数的意义。
本单元教学负数的重点是理解它的意义,初步建立负数的概念。生活中有许多具有相反
意义的数量,如上升与下降的距离、收入与支出的金额、盈余与亏损的数量……怎样用数学
的方法清楚、简便地表示并区分这些具有相反意义的数量?于是人类发明了负数。这些既是
负数产生的历史过程,也是教学负数时可采用的素材。本单元教学的第一部分,选择学生经
常接触到的气温和具有形象特征的海拔高度为素材,帮助学生初步建立负数的概念。
(1) 用负数表示低于零度的温度,学生首次感知负数。
例1精心选择三个城市同一天的最低气温,设计了“创设问题情境——讲解负数知识”
的教学线索,让学生有意义地接受负数。教材分三个环节编写:第一是营造需要——用不同
的数分别表示零上温度和零下温度;第二是讲解负数的知识,包括正数和负数的表示方法和
读、写;第三是通过“试一试”巩固例题教学的知识。
教材通过精心选择的三个最低气温,营造教学负数的氛围。南京的最低气温刚好是0摄
氏度,上海的最低气温是零上4摄氏度,北京的最低气温是零下4摄氏度。上海和北京的最
低气温是两个不同概念的4摄氏度,怎样用数学的方法分别表示这两个温度,让人一看就明
白而且不会发生混淆?这就是教学负数的氛围。为了营造这样的氛围,例题让学生联系各个
城市图片右边的温度计说说“能知道些什么”,鼓励他们广泛地交流,包括看到的各个城市
的具体气温以及由此想到的上海气温比0摄氏度高,北京气温比0摄氏度低等内容。由此在
学生内心产生一种需要:寻找一种比较简便的方法,表示并区分上海与北京的不同气温。
教材把正数与负数结合在一起讲解,有利于突出负数的意义与表示方法,体会正数与负
数分别表示具有相反意义的数量。先讲零上4摄氏度与零下4摄氏度分别记作+4℃和-
4℃,让学生清楚地看到它们使用了不同的表示方法。再讲“+4”与“-4”的读法,并
通过“+4也可以写成4”初步把以前学过的那些大于0的自然数与正数联系起来。

“试一试”让学生独立写出香港、哈尔滨、西宁三个城市某一天的气温,其中两个城市
的气温用负数表示,一个城市的气温用正数表示。通过写出这些正数和负数,再次体会负数
的意义,巩固在例题中教学的知识。
在教学用正数或负数表示温度的同时,还应教会学生看温度计上显示的温度。如温度计
上同时表示摄氏温度与华氏温度,我们生活中经常使用的是摄氏温度,它的标记是“℃”
又如温度计上的零上温度要从零度刻度线往上看,每小格表示1度,每大格表示10度;温
度计上的零下温度要从零度刻度线往下看,也是每小格表示1度,每大格表示10度。第7
页第6题在温度计上表示某市2004年四个季度的平均气温拳击航母 ,也是为了让学生学会看温度计
而设计的。
(2) 用正数或负数表示海拔高度,丰富对负数的感性认识。
例2用正数表示珠穆朗玛峰的海拔高度,用负数表示吐鲁番盆地的海拔高度。虽然学生
缺乏海拔高度的知识,但“高于海平面”“低于海平面”等概念形象具体,有利于学生体会
正数和负数分别表示具有相反意义的数量。例题采用“比海平面高”“比海平面低”这样的
描述表达了珠穆朗玛峰和吐鲁番盆地的相对高度,用图画帮助学生理解词语的意思。图中把
海平面用一条红色虚线凸现,这样,什么是比海平面高、什么是比海平面低,以及需要不同
的数来表示和区分这两种数量就显而易见了。通过用+8844米表示海拔8844米,用-155
米表示海拔负155米,学生又一次联系实际济宁名吃 体会到正数与负数的意义,他们对负数的感性认
识就更丰富了。
这道例题里没有讲+8844、-155的读法,这是考虑到学生在前一道例题中已经初步学
习了正数与负数的读法,这里把读数的机会留给了学生。
(3) 初步揭示正数与负数的概念。
通过两道例题以及“试一试”的教学,已经认识了+4、-4、1911-7、8844
155等数。如果把这些数分成两类,那么可以把+4、19+8844分在同一类,把-4、
11、-7、-155分在另一类。教材告诉学生像前一类这样的数都是正数,像后一类这样
的数都是负数,初步揭示了正数与负数的概念。要注意的是,教材没有给正数、负数下定义,
只是通过列举的方式让学生知道怎样的数是正数,怎样的数是负数。并联系零上温度、比海
平面高的高度都可以写成正数,零下温度、比海平面低的高度都可以写成负数,支持正数与
负数概念的形成。
第3页“练一练”第1题,先读一读题中的6个数,再把这些数分别填入正数或负数的
集合圈里。可以在填写后让学怎么开发右脑 生说一说,在两道例题里正数分别表示了什么样的数量,负数
分别表示了什么样的数量,以加强对正数与负数的理解。第6页第3题在写出5个正数与5
个负数之后,也可以对学生提出类似的要求。
教材中的“0既不是正数,也不是负数。正数都大于0,负数都小于0”这些知识不需
要我们告诉学生,他们只要联系例题学习的体会完全能够自己得出,教学只要引一引就可以
了。这些知识也不需要机械记忆,学生自己得出的知识能够记住,并通过这些知识进一步理
解负数的意义。
2. 在盈与亏、收与支、升与降、增与减以及朝两个相反方向运动等现实的情境中应
用负数,进一步理解负数的意义。
本单元的第二部分以生活中常见香港哪里好玩 的负数为教学内容,让学生体验并尝试在生活中应用负

数,从而进一步理解负数的意义。
(1) 两道例题设计了不同的教学方法。
例3呈现了一张反映新光服装店今年上半年每月盈亏情况的统计表,“盈亏金额”
里有正数,也有负数。教学任务是让学生了解正数与负数在这道例题中分别表示的具体意义,
看着统计表里的数据逐一分析各个月是盈利还是亏损,具体的钱数各是多少。还可以分析这
半年盈亏的整体状况,包括有几个月是盈余的,有几个月是亏损的……这道例题的教学方法
是,先由教材告诉学生“通常情况下,盈利用正数表示,亏损用负数表示”这个规则,再由
学生依据规则对统计表里的每个数据作出具体的解释。从而体会正数和负数可以分别表示盈
与亏这两种具有相反意义的数量。
例4呈现的是一幅平面图,学校在平面图的中心,它的东、西两个方向2100米处分别
是邮局和公园,南、北两个方向1240米处分别是少年宫和超市。这道例题的教学要求是让
学生知道在相背运动时,如果一个方向行走的路程用正数表示,那么另一个方向行走的路程
可以用负数表示。“开放”是这道例题的特点,表现在两点上。一是情境与问题有开放性。
小华从学校出发,沿东西方向的大街走2100米,到了什么地方?这个问题有两个答案,即小
华如果向东走,则到达邮局;如果向西走,则到达公园。同样,小华从学校出发,沿南北方
向的大街走1240米,到达的地点也有超市或少年宫两种可能。二是解决问题的方法有开放
性。在前面的几道例题中,用正数表示零上温度、高于海平面的高度、盈余金额,用负数表
示零下温度、低于海平面的高度、亏损金额,这些几乎都是人们已经约定了的,在通常情况
下大家都遵循这些表示的规则。在本例中,朝哪个方向行走的路程记作正数,朝哪个方向行
走的路程记作负数,一般没有约定,而是在解决问题时临时规定的。如果把向东行走的米数
记作正数,那么向西行走的米数就记作负数;也可以把向西行走的米数记作正数,那么向东
行走的米数就记作负数。教材充分体现开放性的特点,首先是通过开放的问题情境:小华沿
东西方向大街走2100米“到了什么地方”,沿南北方向大街走1240“可以到哪里”,在学生
中引发争议,使他们感受到可以用正数和负数区别表示相反方向运动的路程。其次是允许并
鼓励学生应用不同的表示规则。在小华沿东西方向的大街行走时,“如果把向东走2100米记
+2100米,那么向西走2100米记作-2100米。”为学生“把向西走2100米记作+2100米,
向东走2100米记作-2100米”留出了空间。在小华沿南北方向的大街行走的问题中,要求
学生“根据行走的方向和路程,分别写出一个正数和一个负数”,赋予他们按自己的意愿确
定表示规则的机会与条件。这样,学生对正数与负数能分别表示具有相反意义的数量会有更
深切的体验。
(2) 两次“试一试”提出了不同的认知要求。
第4页的“试一试”里,告诉学生新光服装店去年下半年每个月的盈利或亏损的金额,
让他们在盈亏的情境中应用负数知识,加强“盈利通常用正数表示,亏损通常记作负数”的
印象。与例题相比,这次“试一试”在认知水平上没有提出更高的要求,仅是变换了思维的
方向。例题是根据“表示规则”体会统计表里各个正数与负数的具体含义,“试一试”是应
用规则把具体现象用正数或负数表示在统计表里。预计学生完成这次“试一试”一般不会有
困难。 老虎儿童画
第5页的“试一试”对学生提出了两点要求: 一是写出数轴上的点所对应的数,其中
有正数,也有负数。通过写数与读数,尤其是数轴上正数与负数的位置,进一步体会正数与
负数表示相反意义的数量,从而更好地理解负数的意义,巩固负数的知识。二是看一看并想
一想,-2接近0还是接近2,在数轴上初步感受数序。和例题相比,在认知水平上提出了

更高的要求,对各道例题教学的知识与思想方法适度地概括与提升。教学这次“试一试”
要对这两个问题作细致的思考:(1) 怎样呈现学钢琴要多少钱 数轴,使学生理解数轴上已有的0、1、2、
4,以及-1、-2、-5等数的意义,有利于继续在方框里填出其他各数。(2) 怎样帮
助学生初步体会数的排列顺序。下面提供对这两个问题的教学设计,仅供参考。
“你会填一填、读一读吗”的教学可以分三步进行。首先出现数轴,在它的上面有许多
间距都相等的点,其中一个点的下面写出数“0”。接着联系在例4中学到的用正数和负数
表示相反方向运动的路程的经验(也可以联系其他例题中应用正、负数的经验),出现数轴
上的其他已知数。如果从“0”点出发,向东走1步、2步、4步,到达的位置用数轴上“0”
右边的点及相应的数1、2、4表示,那么向西走1步、2步、5步,到达的位置应该用“0”
左边的点及相应的-1、-2、-5表示。给抽象的数以具体的含义,能帮助学生体会数轴
上的点与数之间的对应关系。然后再让学生写出四个框里的数,并说说自己的思考。这样,
学生不仅写出了这些数,还联系实际体会了这些数的意义。
联系数轴上的数初步体会数序也可以分三步进行。首先仔细观察数轴上“0”的左边和
右边分别是什么样的数,联系“正数都大于0、负数都小于0”体会这样分布的合理性。然
后仔细研究正数1、2、3……在数轴上的排列方向是从左往右,-1、-2、-3……在
数轴上的排列方向是从右往左,也要联系实际体会这样排列的合理性。最后是观察数轴上的
数,回答“-2接近0还是接近2”这个问题,并简单解释其理由。
(3) 联系已有的知识与经验,在练习中继续体会正数与负数表示的具体对象。
练习一里继续扩展教学素材,让学生通过水位、升降机的上升与下降,在银行取款与存
钱,公共汽车停靠时乘客的上车与下车等感兴趣、能接受的题材,丰富对负数的感性认识,
更好地理解负数的意义。这些练习在编写上的共同点是,通过一个已知的数据显示用正数、
负数表示的规则,让学生按这样的规则,把同一情境中其他的数分别记作正数或负数。要尽
量让学生独立完成练习,一是通过自己读题,独立理解问题情境;二是仔细寻找,独立发现
记作正数(或负数)的规则;三是独立完成练习后,交流写出的数以及写数时的思考。对少
数有困难的学生,可以在体会“表示的规则”上给予适当的帮助。如第10题表格里“起点
站”下面的“+21”表示上车的人数记作正数,起点站上车21人。
在每一道题完成以后,还可以组织学生说说,这道题里什么样的数量记作正数,什么样
的数量记作负数,正数与负数在现实情境里表示的数量有什么不同,引导他们主动地体会负
数的意义。
3. 《面积是多少》让学生体会转化、估计等解决问题的策略,为教学平行四边形等
图形的面积计算作比较充分的知识准备和思想准备。
实践活动《面积是多少》安排在平行四边形、三角形、梯形面积计算教学的前面,其任
务主要有两个:一是复习并激活已经教学的面积知识,包括面积的意义、面积单位、长方形
和正方形的面积公式等。二是让学生体会转化、估元丰五年 计等解决问题的策略,为主动学习其他图
形的面积计算打基础。
(1) 已有的知识对教学新知识的重要作用大家都很清楚,教材复习旧知不是让学生
被动回忆,而是在一个个现实的情境中,主动从记忆中提取,通过解决问题使这些知识处于
激活的状态。如,所有的问题都是求平面图形或物体表面的面积,势必会引起对面积概念的
回忆;各个求面积的问题使用了不同的面积单位,这就复习了常用的面积单位;有些问题的
解决归结到长方形、正方形面积的计算上,这些面积公式在应用中被激活了。

(2) 转化作为一种策略包括两层内容: 转化的方法和转化的意识。前者是操作层面
上的技术,后者是思想层面上的体验。
10页教学的转化方法是,对图形进行分解与组合(一个大图形可以分解成若干个小
图形,这些小图形共同组合成大图形)、分割与移拼(先把一个不规则的图形进行分解,再
移动其中一部分或几部分的位置,拼成一个比较规则的图形),在保持面积不变的前提下,
实现形状的变化。教学的转化意识是,稍复杂的图形可以等积变形成较简单的图形,求积方
法未知的图形可以变成求积方法已知的图形,转化是实现新旧知识相联系的手段,是探索新
知识的途径。教材让学生通过解决新颖的、富有挑战性的问题,学习转化方法,体石油的成分 验转化思
想,形成自己的策略。
在“分一分、数一数”里教学分解与组合进行图形转化的策略。教材通过问题“你能先
把每个图形分成几块,再数一数吗”引导学生把较复杂的不规则图形转化成若干个长方形、
正方形的总和。在“移一移、数一数”栏目里教学分割与移拼进行图形转化的策略,通过问
“怎样移动图形中的一部分,很快数出它的面积”既激活学生在前一个活动里初步获得的
体验——把复杂的图形转化成长方形(或正方形),又明确指出这里的转化方法——移动图
形中的一部分。
这两个活动的教学一般可以分两步进行: 第一步是在教材的引导下,学生独立开展转
化图形的活动,并数出(算出)图形的面积。第二步是组织学生交流,首先要交流各人的转
化方法,让学生一方面体会转化的方法是多样的;另一方面体会各种转化方法有共同点,
是把复杂的图形变成长方形和正方形;还要交流把图形“分一分”“移一移”对计算它的面
积起了什么作用。这样,学生得到的就不单是转化的方法,而且体验了转化对解决问题和数
学学习的意义。
(3) 通过数方格进行估计,也是一种计算图形面积的策略,特别对复杂的、不规则
的曲线图形更显得有价值。第11页教材里有三点要引起教学的注意:第一,注意方法的指
导。“数一数、算一算”的活动是求池塘的面积,教材先指导学生“把整格的和不满整格的
分别涂上不同的颜色”又指导学生“不满整格的都按半格计算”前者能使数方格时避免遗
漏和重复,从而减少错误,后者能使计算简便,很快得出结果。第二,注意对方法的反思和
评价。在算出池塘的面积后,教材让学生反思“这样的算法合理吗”,并通过讨论评价这种
方法。教学时可以把教材中的问题拆成两组问题进行反思和评价,先讨论“把整格的和不满
整格的分别涂上不同的颜色”的目的是什么,让学生体会这样做的好处,从而变成自我需要、
自觉行动。再讨论“为什么把不满整格的都按半格计算”,让学生西安限行 体会不满整格的有小于半
格和大对教师的评价语 于半格两种情况,把它们都按半格计算是比较合理的。第三,注意方法的发展和应用。
“数一数、算一算”的活动还要数方格估计对称的树叶的面积,学生可以创造性地应用估计
池塘面积的方法,先得出半片树叶的面积,再乘2得到整片树叶的面积。在“估一估、算一
算”的活动里,继续估计其他树叶的面积和手掌的面积。为了便于学生估计,教材在最后的
附页里提供了面积是1平方厘米的方格纸,学生不仅能用来完成教材中的练习,还可以结合
自己的兴趣,进行更多的估计面积的活动。


蚂蚁作文200字-公司新年贺词

负数的意义

本文发布于:2023-04-19 13:30:20,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/zhishi/a/168188222146121.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

本文word下载地址:负数的意义.doc

本文 PDF 下载地址:负数的意义.pdf

上一篇:印度咖喱饭
下一篇:返回列表
标签:负数的意义
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 实用文体写作网旗下知识大全大全栏目是一个全百科类宝库! 优秀范文|法律文书|专利查询|