CDMA通信系统研究与仿真

更新时间:2023-11-03 01:18:40 阅读: 评论:0

英语素材-叉车应急预案

CDMA通信系统研究与仿真
2023年11月3日发(作者:西湖的诗句)

摘要 ...................................................................... III

Abstract .................................................................... V

1 第三代移动通信系统概述 ............................................... 1

1.1 论文选题背景 ........................................................ 1

1.2 3G系统功能概述 ...................................................... 1

1.3 多址通信方式 ........................................................ 2

2 CDMA原理与仿真 ...................................................... 5

2.1 CDMA技术基础原理 .................................................... 5

2.2 CDMA系统的主要优点 .................................................. 6

3 扩展频谱通信的基本概念 .............................................. 13

3.1 扩展频谱通信的定义 ................................................. 13

3.2 扩频通信的理论基础 ................................................. 14

3.3 运用扩频码进行调制和解调 ........................................... 15

3.4 扩频通信的主要性能指标 ............................................. 16

4 直序扩频系统的组成与原理 ............................................ 19

4.1 组成与原理 ......................................................... 19

4.2 直序扩频码分多址通信系统 ........................................... 20

4.3 直序扩频系统的特点 ................................................. 21

5CMDA通信系统设计仿真 ................................................ 23

5.1 Simulik 简介 ....................................................... 23

5.2 CDMA通信系统设计仿真 ............................................... 24

5.2.1参数设置 ...................................................... 26

5.2.2仿真结果 ...................................................... 35

5.3 总结 ............................................................... 39

参考文献 ................................................................... 41

致谢 ....................................................................... 43

I

CDMA通信系统研究与仿真

摘要

CDMA技术是当前无线电通信,尤其是移动通信的主要技术,不论是在中国已经建立

IS-95规范的中国联通CDMA网、各大移动通信运营商正准备实验及建立第三代(3G

系统还是大设备研发商已经在开发的三代以后(也称为4G)更宽带宽的移动通信系统,

CDMA都是主要的选择。

CDMA概念可以简单地解释为基于扩频通信的调制和多址接入方案。本文阐述了扩展

频谱通信技术的理论基础和CDMA通信系统的组成,建立了直序扩频码分多址通信系统模

型,并利用MATLAB 提供的可视化工具Simulink进行仿真分析。

关键词

:码分多址 ,直序扩频 ,伪随机序列

III

CDMA communications system's investigation and simulation

Abstract

The CDMA technology is the current radio traffic, particularly mobile communication

major technique, no matter already established in China IS-95 the standard China Unicom

CDMA network, each big mobile communication operator will be preparing to test and

establishes the third generation (3G) system big equipment rearch and development business

already (also to be called 4G) in development three generation of later the wider band width

mobile communication system, CDMA was the main choice.

The CDMA concept may explain simply for bad on the wide frequency correspondence

modulation and the multiple access turning on plan. This article elaborated the spread

spectrum communication technology's rationale and the CDMA communications system's

composition, has established the straight foreword wide frequency code division multiple

access communications system model, and visualization tool Simulink which provides using

MATLAB carries on the simulation analysis.

Keywords:

CDMA direct quence spread spectrum pudo noi quence

V

1 第三代移动通信系统概述

1.1 论文选题背景

随着通信技术的迅猛发展,第三代移动通信系统(3G)的研发己经成为了当今世界通信

领域最炽热的课题之一。第三代移动通信所采用的是数字语音和数据(Digital Voice and

Data)技术,与前两代的主要区别是在传输声音和数据的速度上的提升,它能够处理图像、

音乐、视频流等多种媒体形式,提供包括网页浏览、电话会议、电子商务等多种信息服务。

它能够实现全球普及和全球无缝漫游的高质量语音传输系统,全球统一标准,真正实现“任

何人在任何地点、任何时间与任何人”都能顺利的通信。

1.2 3G系统功能概述

第三代移动通信系统即IMT-200O,按其设计思想,是有能力解决第一、第二代移动

通信系统的主要弊端的先进的移动通信系统,它的一个突出的特点就是使个人终端用户能

在全球范围内任何时间、任何地点、与任何人、用任意的方式高质量的实现任何信息的移

动通信传输。可见,第三代移动通信十分重视个人在通信系统中的自主因素,突出了个人

在通信系统中的主导地位,所以又称未来个人通信系统。

3G系统所要实现的目标中,核心的问题是要高效地提供不同环境下的多媒体业务

并实现包含水、陆、空的全球覆盖。因此,它要求实现多种网络的综合:有线网与无线网

的综合;移动网与无线网的综合;陆地网与卫星网的综合等,并且它要能适应多种业务环

境,且与第二代移动通信系统兼容,以便于平滑过渡。对于通信终端而言,它是对多种通

信网的综合,因而需要实现多频多模式终端。为了满足未来的业务需求,相对于现有的移

动通信系统,3G系统应具有以下的功能:

1.提供更大的通信容量和覆盖范围

第三代移动通信系统提出的宽带CDMA可以使用更宽的信道或在小区中使用更多的载

频,从而可以提供更大的小区容量。由于带宽更大,还可改善频率分集效果,从而降低衰

减,为用户提供更好的统计平均效果。频带更宽还可以改善功率控制精度,进一步降低衰

减的影响。此外,第三代移动通信系统使用多项新技术(如智能天线、联合检测等)可以提

高解调增益,增大系统覆盖范围,在保证用户质量的前提下,提供更大的信息容量。

- 1 -

2.具有可变高速数据率

第三代通信系统无线接口具有不同的数据比特率。在快速移动的环境下,最高数据率

144kbi/s;在室内环境下,最高数据率达2Mbi/s在室外或室内步行的环境下,最高数

据率达到384kbi/s。这种数据率不仅可以支持普通话音,还可以支持多媒体数据,可满

足具有不同通信要求的各种用户。

3.同时提供高速电路交换和分组业务服务

虽然在窄带CDMAGSM移动通信业务中,也能提供电路交换和分组业务,但两者却

很难同时提供,而3G系统协议层设计可以很方便的解决这一问题。每个中断均可以使用

多种业务因而使用户在连接到局域网时还可接受话音业务,同时进行话音通信和收发数

据。

4.具有高频谱的利用率

目前,各国的蜂窝移动通信都有很大的发展,但系统容量仍满足不了需求,解决移动

通信系统容量问题就成了当务之急,而解决系统容量的最有效的途径就是提高频谱的利用

率。相对于2G系统,3G系统的频谱利用率有了很大的提高。除了以上所述之外,3G系统

还有很多的优点,如提供更加可靠的信道编码,灵活的配置传输信道和逻辑信道,支持多

种语音编码方案等。

[1]

1.3 多址通信方式

随着社会需求和科学技术的发展,无线通信正在向无线多址通信发展。所谓无线多址

通信是指在一个通信网内各个通信台、站共享一个指定的射频频道,进行相互间的多边通

信,也称该通信网为各用户间的多元连接。实现多址连接的理论基础是信号分割技术。

就是在发送端进行恰当的信号设计,使各站所发射的信号有所差异。在接收端有信号识别

能力,能从混合信号中分离选择出相应的信号。在发送端,信号设计的任务是使信号按某

种参量相互正交或准正交。一个无线电信号可以用若干参数来表征,其中最基本的是信号

的射频频率、信号出现的时间、信号出现的空间、信号的码型、信号的波形等。按照这些

参量的分割,可以实现的多址连接有频分多址(FDMA)、时分多址 (TDMA)、码分多址

(CDMA)、空分多址 (SDMA)等。目前,在移动通信系统中所采用的多址方式主要有三种:

频分多址、时分多址和码分多址。

1)频分多址 (FDMA)

频分多址是发送端对所有信号的频率参量进行正交分割,形成许多互不重叠的频带。

在接收端利用频率的正交性,通过频率选择(滤波)从混合信号中选出相应的信号。在移

- 2 -

动通信系统中,频分多址是把通信系统的总频段划分成若干个等间隔的互不重叠的频道分

配给不同的用户使用。这些频道互不重叠,其宽度能传输一路话音信息,而在相邻频道之

间无明显的干扰。为了实现双工通信,收发使用不同的频率(称之为频分双工)收发频率

之间要有一定的频率间隔,以防同一部电台的发射机对接收机的干扰。这样,在频分多址

中,每个用户在通信时要用一对频率(称之为一个信道)

2)时分多址 (TDMA)

时分多址是发送端对所发送信号的时间参量进行正交分割,形成许多互不重叠的时

隙。在接收端利用时间的正交性,通过时间选择从混合信号中选出相应的信号。时分多址

是把时间分割成周期性帧,每一帧再分割成若干个时隙(无论帧或时隙都是互相不重叠

),然后根据一定的时隙分配原则,使移动台在每帧中按指定的时隙向基站发送信号,

基站可以分别在各个时隙中接收到移动台的信号而不混淆。同时,基站发向多个移动台的

信号都按规定在预定的时隙中发射,各移动台在指定的时隙中接收,从合路的信号中提取

发给它的信号。

3)码分多址(CDMA)

码分多址是各发送端用各不相同的、相互正交的地址码调制其所发送的信号。在接收

端利用码型的正交性,通过地址识别(相关检测)从混合信号中选出相应的信号。码分多址

的特点是:(l)网内所有用户使用同一载波,占用相同的带宽;(2)各个用户可以同时发送或

接收信号。码分多址通信系统各用户发射的信号共同使用整个频带,发射时间又是任意的,

所以各用户的发射信号在时间上、频率上都可相互重叠。因此,采用传统的滤波器或选通

门是不能分离信号的,对某用户发送的信号,只有与其相匹配的接收机通过相关检测才可

能正确接收。

[2]

- 3 -

2 CDMA原理与仿真

2.1 CDMA技术基础原理

CDMA中,所有用户使用相同的频率和相同的时间在同一地区通信,不同用户信号

依靠地址码不同区分。对数据信号进行再一次调制属于扩展频谱调制(简称为扩频调制)

CDMA蜂窝移动通信系统中采用直接序列DS扩频调制。DS扩频通信发信机和接收机。

多址通信的关键是接收端能在许多个多址信号中把接收信号正确分离出来。对于码分

多址信号,每一个信号都是一个扩谱信号,不同用户的信号有不同的地址码,即采用不同

的扩谱码进行扩谱调制。

对地址码的要求是自相关性能和互相关性能好,且不同地址码的数量要足够多。伪随

机序列(或称PN码)具有类似于噪声序列的性质,是一种貌似随机但实际上是有规律的

周期性二进制序列。在采用码分多址方式的通信技术中,地址码都是从伪随机序列中选取

的,但是不同的用途选用不同的伪随机序列。

在所有的伪随机序列中,m序列是最重要、最基本的伪随机序列,在定时严格的系统

中,我们采用m序列作为地址码,利用它的不同相位来区分不同的用户,目前的CDMA

统就是采用这种方法。

CDMA系统中,用到两个m序列,一个长度是2-1,一个长度是2-1,各自的用处

1542

不同。

在前向信道中,长度为2-1m序列被用作对业务信道进行扰码(注意不是被用作

42

扩频,在前向信道中使用正交的Walsh函数进行扩频)长度为2-1m序列被用于对前

15

向信道进行正交调制,不同的基站采用不同相位的m序列进行调制,其相位差至少为64

个码片,这样最多可有512个不同的相位可用。

在反向CDMA信道中,长度为2-1m序列被用作直接扩频,每个用户被分配一个m

42

序列的相位,这个相位是由用户的ESN计算出来的,这些相位是随机分别且不会重复的,

这些用户的反向信道之间基本是正交的。长度为2-1PN码也被用于对反向业务信道进

15

行正交调制,但因为在反向因为信道上不需要标识属于哪个基站,所以对于所有移动台而

言都使用同一相位的m序列,其相位偏置是0

[3]

- 5 -

2.2 CDMA系统的主要优点

CDMA系统采用码分多址的技术及扩频通信的原理,使得可以在系统中使用多种先进

的信号处理技术,为系统带来许多优点。以下介绍了CDMA无线通信系统的几个显着特点。

一、大容量

根据理论计算及现场试验表明,CDMA系统的信道容量是模拟系统的10~20倍,TDMA

系统的4倍。CDMA系统的高容量很大一部分因素是因为它的频率复用系数远远超过其它

制式的蜂窝系统,同时CDMA使用了话音激活和扇区化,快速功率控制等。按照香农定理,

各种多址方式(FDMATDMACDMA)都应有相同的容量。但这种考虑有几种欠缺。一是

假设所有的用户在同一时间内连续不断地传送消息,这对话音通信来说是不符合实际的;

二是没有考虑在地理上重新分配频率的问题;三是没有考虑信号传输中的多径衰落。决定

CDMA数字蜂窝系统容量的主要参数是:处理增益、Eb/No、话音负载周期、频率复用效率

和基站天线扇区数。

若不考虑蜂窝系统的特点,只考虑一般扩频通信系统,接收信号的载干比定义为载波

功率与干扰功率的比值,可以写成:

E

b

)(

IRE

obb

C

IIW

o

()

W

R

b

2.1

其中:

Eb:信息的比特能量;

Rb:信息的比特率;

Io:干扰的功率谱密度;

W:总频段宽度(这里也是CDMA信号所占的频谱宽度,即扩频宽度)

Eb/Io:类似与通常所说的归一化信噪比,其取值决定于系统对误比特率或话音质量的要

求,并与系统的调制方式和编码方案有关;

W/Rb:系统的处理增益。

N个用户共享一个无线信道,显然,每一个用户的信号都受到其它N-1个用户信号的干

扰。假定到达一个接收机的信号强度和各干扰强度都相等,则载干比为:

C1

(2.2)

IN1

- 6 -

W

)(

R

b

N1

E

()

b

I

o

(2.3)

N>>1,于是

W

)(

R

b

N

E

()

b

I

o

(2.4)

结果说明,在误比特率一定的条件下,所需要的归一化信噪比越小,系统可以同时容

纳的用户数越多。应该注意这里的假定条件,所谓到达接收机的信号强度和各个干扰强度

都一样,对单一小区(没有邻近小区的干扰)而言,在前向传输时,不加功率控制即可满

足;但是在反向传输时,各个移动台向基站发送的信号必须进行理想的功率控制才能满足。

其次,应根据CDMA蜂窝通信系统的特征对这里得到的公式进行修正。

1)话音激活期的影响

在典型的全双工通话中,每次通话中话音存在时间一般为40%。如果在话音停顿时停

止信号发射,对CDMA系统而言,减少了对其它用户的干扰,使系统的容量提高到原来的

1/0.35=2.86倍。虽然FDMATDMA两种系统都可以利用这种停顿,使容量获得一定程度

的提高,但是要做到这一点,必须增加额外的控制开销,而且要实现信道的动态分配必然

会带来时间上的延迟,而CDMA系统可以很容易地实现。

2)扇区化

CDMA小区扇区化有很好的容量扩充作用,其效果好于扇区化对FDMATDMA系统的

影响。小区一般划分为三个扇区,天线波束宽度一般小于120度,因为天线方向幅度宽而

且经常出现传播异常,这些天线覆盖区域有很大的重叠,扇区之间的隔离并不可靠。因此,

窄带系统在小区扇区化时小区频率复用并无改善。而对于CDMA系统来说,扇区化之后(采

用方向性天线),干扰可以看成近似减少为原来的三分之一,因此网络容量增加为原来的

三倍。

3)频率再用

CDMA系统中,若干小区的基站都工作在同一频率上,这些小区内的移动台也工作

在同一频率上。因此,任意小区的移动台都会受到相邻小区基站的干扰,任意小区的基站

也都会受到相邻小区移动台的干扰。这些干扰的存在必然会影响系统的容量。因此必须采

- 7 -

取措施限制来自临近小区的干扰,才能提高系统的频率再用效率。

4)低的Eb/No

Eb/No是数字调制和编码技术藉以比较的标准。由于CDMA系统采用很宽的信道带宽,

可以采用高冗余的强纠错编码技术,而窄带数字系统由于信道带宽限制,只能采用低冗余

的纠错编码,纠错能力也较低。因此,CDMA系统要求的Eb/No比窄带系统要低,降低干

扰,扩大了容量。

二、软容量

FDMATDMA系统中,当小区服务的用户数达到最大信道数,已满载的系统再无法

增添一个信号,此时若有新的呼叫,该用户只能听到忙音。而在CDMA系统中,用户数目

和服务质量之间可以相互折中,灵活确定。例如系统运营者可以在话务量高峰期将某些参

数进行调整,例如可以将目标误帧率稍稍提高,从而增加可用信道数。同时,在相邻小区

的负荷较轻时,本小区受到的干扰较小,容量就可以适当增加。

体现软容量的另外一种形式是小区呼吸功能。所谓小区呼吸功能就是指各个小区的覆

盖大小是动态的。当相邻两个小区负荷一轻一重时,负荷重的小区通过减小导频发射功率,

使本小区的边缘用户由于导频强度不够,切换到相邻的小区,使负荷分担,即相当于增加

了容量。

这项功能可以避免在切换过程中由于信道短缺造成的掉话。在模拟系统和数字TDMA

系统中,如果没有可用信道,呼叫必须重新被分配到另一条候选信道,或者在切换时中断。

但是在CDMA中,建议可以适当提高用户的可接受的误比特率直到另外一个呼叫结束。

三、软切换

所谓软切换是指移动台需要切换时,先与新的基站连通再与原基站切断联系,而不是

先切断与原基站的联系再与新的基站连通。软切换只能在同一频率的信道间进行,因此,

模拟系统、TDMA系统不具有这种功能。软切换可以有效地提高切换的可靠性,大大减少

切换造成的掉话,因为据统计,模拟系统、TDMA系统无线信道上的掉话90%发生在切换中。

同时,软切换还提供分集,在软切换中,由于各个小区采用同一频带,因而移动台可

同时与小区A和邻近小区B同时进行通信。在反向信道,两基站分别接收来自移动台的有

用信号,以帧为单位译码分别传给移动交换中心,移动交换中心内的声码器/选择器

Vocoder/Selector也以帧为单位,通过对每一帧数据后面的CRC校验码来分别校验这

两帧的好坏,如果只有一帧为好帧,则声码器就选择这一好帧进行声码变换;如果两帧都

为好帧,则声码器就任选一帧进行声码变换;如果两帧都为坏帧,则声码器放弃当前帧,

- 8 -

取出前面的一个好帧进行声码变换。这样就保证了基站最佳的接收结果。在前向信道,

个小区的基站同时向移动台发射有用信号,移动台把其中一个基站来的有用信号实际作为

多径信号进行分集接收。这样在软切换中,由于采用了空间分集技术,大大提高了移动台

在小区边缘的通信质量,增加了系统的容量。从反向链路来说,移动台根据传播状况好的

基站情况来调整发射功率,减少了反向链路的干扰,从而增加了反向链路的容量。

四、采用多种分集技术

分集技术是指系统能同时接收并有效利用两个或更多个输入信号,这些输入信号的衰

落互不相关。系统分别解调这些信号然后将它们相加,这样可以接收到更多的有用信号,

克服衰落。

移动通信信道是一种多径衰落信道,发射的信号要经过直射、反射、散射等多条传播

路径才能到达接收端,而且随着移动台的移动,各条传播路径上的信号负担、时延及相位

随时随地发生变化,所以接收到的信号的电平是起伏的、不稳定的,这些不同相位的多径

信号相互迭加就形成衰落。迭加后的信号幅度变化符合瑞利分布,因而又称瑞利衰落。

利衰落随时间急剧变化时,称为“快衰落”。而阴影衰落是由于地形的影响(例如建筑物

的阻挡等)而造成的信号中值的缓慢变化。

分集接收是克服多径衰落的一个有效方法,采用这种方法,接收机可对多个携有相同

信息且衰落特性相互独立的接收信号在合并处理之后进行判决。由于衰落具有频率、时间

和空间的选择性,因此分集技术包括频率分集、时间分集和空间分集。

减弱慢衰落的影响可采用空间分集,即用几个独立天线或在不同的场地分别发送和接

收信号,以保证各信号之间的衰落独立。由于这些信号在传输过程中的地理环境不同,

以各信号的衰落各不相同。采用选择性合成技术选择较强的一个输出,降低了地形等因素

对信号的影响。

根据衰落的频率选择性,当两个频率间隔大于信道的相关带宽时,接收到的此两种频

率的衰落信号不相关。市区的相关带宽一般为50kHz左右,郊区的相关带宽一般为250kHz

左右。而码分多址的一个信道带宽为1.23MHz无论在郊区还是在市区都远远大于相关带

宽的要求,所以码分多址的宽带传输本身就是频率分集。

时间分集是利用基站和移动台的Rake接收机来完成的。对于一个信道带宽为1.23MHz

的码分多址系统,当来自两个不同路径的信号的时延差为1us,也就是这两条路径相差大

约为0.3Km时,Rake就可以将它们分别提取出来而不互相混淆。CDMA系统对多径的接收

能力在基站和移动台是不同的。在基站处,对应与每一个反向信道,都有四个数字解调器,

- 9 -

而每个数字解调器又包含两个搜索单元和一个解调单元。搜索单元的作用是在规定的窗口

内迅速搜索多径,搜索到之后再交给数字解调单元。这样对于一条反向业务信道,每个基

站都同时解调四个多径信号,进行矢量合并,再进行数字判决恢复信号。如果移动台处在

三方软切换中,三个基站同时解调同一个反向业务信道(空间分集),这样最多时相当于

12个解调器同时解调同一反向信道,这在TDMA中是不可能实现的。而在移动台里,一般

只有三个数字解调单元,一个搜索单元。搜索单元的作用也是迅速搜索可用的多径。当只

接收到一个基站的信号时,移动台可同时解调三个多径信号进行矢量合并。如果移动台处

在三方软切换中,三个基站同时向该移动台发送信号,移动台最多也只能同时解调三个多

径信号进行矢量合并,也就是说,在移动台端,对从不同基站来的信号与从不同基站来的

多径信号一起解调。但这里也有一定的规则,如果处在三方软切换中,即使从其中一个基

站来的第二条路径信号强度大于从另外两个基站来的信号的强度,移动台也不解调这条多

径信号,而是尽量多地解调从不同基站来的信号,以便获得来自不同基站的功率控制比特,

使自身发射功率总处于最低的状态,以减少对系统的干扰。这样就加强了空间分集的作用。

CDMA系统中就这样综合利用了频率分集、空间分集和时间分集来抵抗衰落对信号的影响,

从而获得高质量的通信性能。

五、话音激活

典型的全双工双向通话中,每次的通话的占空比小于35%,在FDMATDMA系统中,

由于通话停顿等重新分配信道存在一定的时延,所以难以利用话音激活因素。CDMA系统

因为使用了可变速率声码器,在不讲话时传输速率低,减轻了对其它用户的干扰,这即是

CDMA系统的话音激活技术。

六、保密

CDMA系统的信号扰码方式提供了高度的保密性,使这种数字蜂窝系统在防止串话、

盗用等方面具有其它系统不可比拟的优点。

七、低发射功率

众所周知,由于CDMA (IS-95) 系统中采用快速的反向功率控制、软切换、语音激活

等技术,以及IS-95规范对手机最大发射功率的限制,使CDMA手机在通信过程中辐射功

率很小而享有“绿色手机”的美誉,这是与GSM相比,CDMA的重要优点之一。

从手机发射功率限制的角度来比较:

目前普遍使用的GSM手机900MHz频段最大发射功率为2W 33dBm1800MHz频段最

大发射功率为1W 30dBm,同时规范要求,对于GSM9001800频段,通信过程中手机

- 10 -

最小发射功率分别不能低于5dBm0dBmCDMA IS-95A规范对手机最大发射功率要求为

0.2W1W23dBm30dBm实际上目前网络上允许手机的最大发射功率为23dBm (0.2W)

规范对CDMA手机最小发射功率没有要求。 在实际通信过程中,在某个时刻某个地点,

手机的实际发射功率取决于环境,系统对通信质量的要求,语音激活等诸多因素, 实际上

就是取决于系统的链路预算。在通常的网络设计和规划中, 对于基本相同的误帧率要求,

GSM系统要求到达基站的手机信号的载干比通常为9dB左右,由于CDMA系统采用扩频技

, 扩频增益对全速率编码的增益为21dB, (对其它低速率编码的增益更大), 所以对解

扩前信号的等效载干比的要求为 -14dB (CDMA系统通常要解扩后信号的值为7dB

E/N

b0

左右)

从手机发射功率的初始值的取定及功率控制机制的角度来进行比较:

手机与系统的通信可分为两个阶段,一是接入阶段,二是通话阶段。对于GSM系统,

手机在随机接入阶段没有进入专用模式以前,是没有功率控制的,为保证接入成功,手机

以系统能允许的最大功率发射 (通常是手机的最大发射功率)。在分配专用信道(SDCCH

TCH)后,手机会根据基站的指令调整手机的发射功率,调整的步长通常为2dB。调整

的频率为60ms一次。

对于CDMA系统,在随机接入状态下,手机会根据接收到的基站信号电平估计一个较

小的值作为手机的初始发射功率, 发送第一个接入试探,如果在规定的时间内没有得到基

站的应答信息,手机会加大发射功率,发送第二个接入试探,如果在规定时间内还没有得

到基站的应答信息,手机会再加大发射功率。这个过程重复下去,直到收到基站的应答或

者到达设定的最多尝试次数为止。在通话状态下,1.25ms 基站会向手机发送一个功率

控制命令信息,命令手机增大或减少发射功率, 步长通常为1dB

由上面的比较可以看出,总体而言,考虑到CDMA系统其它独有的技术, 如软切换,

RAKE接收机对多径的分集作用,强有力的前向纠错算法对对上行链路预算的改善, CDMA

系统对手机的发射功率的要求比GSM系统对手机发射功的要求要小得多. 而且GSM手机在

接入过程中以最大的功率发射,在通话过程中功率控制速度较慢,所以手机以大功率发射

的机率较大;而CDMA手机独特的随机接入机制和快速的反向功率控制,可以使手机平均

发射功率维持在一个较低的水平。

八、大覆盖范围

从链路预算表中我们可以看出,在CDMA的链路预算中包含以下的一些因素:软切换

增益、分集增益等,这些都是CDMA技术本身带来的,是GSM中所没有的。虽然CDMA在链

- 11 -

路预算中还要考虑自干扰对覆盖范围的影响(加入了干扰余量因子)以及CDMA手机最大

发射功率低于GSM手机的最大发射功率,但是从总体来说,CDMA的链路预算所得出的允

许的最大路径损耗要比GSM大(一般是5-10dB。这意味着,在相同的发射功率和相同的

天线高度条件下,CDMA有更大的覆盖半径,因此需要的基站也更少(对于覆盖受限的区

域这一点意义重大)另外的好处是,对于相同的覆盖半径,CDMA所需要的发射功率更低。

3 扩展频谱通信的基本概念

3.1 扩展频谱通信的定义

扩展频谱通信系统是对信息数据频谱扩展的一种通信系统。要对信息数据的频谱进行

扩展,其扩频所采用的伪随机码须有极宽且均匀的频谱特性。这种伪随机码就叫做扩频序

列。扩频通信要求扩频序列具有较好的自相关特性和互相关特性,属伪随机序列Pudo

Noi Sequence,即PN序列)。其中最常用的有m序列(即最大长度线性反馈移位寄存器

序列)Gold序列、M序列(结构型非线形移位寄存器序列)等。

所谓扩展频谱通信,可简单表述如下:“扩频通信技术是一种信息传输方式,其信号

所占有的频带宽度远大于所传信息必需的最小带宽;频带的扩展是通过一个独立的码序列

来完成,用编码及调制的方法来实现的,与所传信息数据无关;在接收端则用同样的码进

行相关同步接收、解扩及恢复所传信息数据”。这一定义包含了以下三方面的意思:

一、信号的频谱被展宽了。

传输任何信息都需要一定的带宽,称为信息带宽。例如人类的语音的信息带宽为

300Hz3400Hz,电视图像信息带宽为数MHz。为了充分利用频率资源,通常都是尽量采

用大体相当的带宽的信号来传输信息。在无线电通信中射频信号的带宽与所传信息的带宽

是相比拟的。如用调幅信号来传送语音信息,其带宽为语音信息带宽的两倍;电视广播射

频信号带宽也只是其视频信号带宽的一倍多。这些都属于窄带通信。

一般的调频信号,或脉冲编码调制信号,它们的带宽与信息带宽之比也只有几到十几。

扩展频谱通信信号带宽与信息带宽之比则高达100甚至1000,属于宽带通信。

二、采用扩频码序列调制的方式来展宽信号频谱。

在时间上有限的信号,其频谱是无限的。例如很窄的脉冲信号,其频谱则很宽。信号

的频带宽度与其持续时间近似成反比。1微秒的脉冲的带宽约为1MHz因此,如果用限窄

的脉冲序列被所传信息调制,则可产生很宽频带的信号。

如下面介绍的直接序列扩频系统就是采用这种方法获得扩频信号。这种很窄的脉冲码

序列,其码速率是很高的,称为扩频码序列。这里需要说明的一点是所采用的扩频码序列

与所传信息数据是无关的,也就是说它与一般的正弦载波信号一样,丝毫不影响信息传输

的透明性。扩频码序列仅仅起扩展信号频谱的作用。

- 13 -

三、在接收端采用相关解调来解扩

正如在一般的窄带通信中,已调信号在接收端都要进行解调来恢复所传的信息。在扩

频通信中接收端则用与发送端相同的扩频码序列与收到的扩频信号进行相关解调,恢复所

传的信息。换句话说,这种相关解调起到解扩的作用。即把扩展以后的信号又恢复成原来

所传的信息。这种在发端把窄带信息扩展成宽带信号,而在接收端又将其解扩成窄带信息

的处理过程,会带来一系列好处。弄清楚扩频和解扩处理过程的机制,是理解扩频通信本

质的关键所在。

3.2 扩频通信的理论基础

长期以来,人们总是想法使信号所占领谱尽量的窄,以充分利用十分宝贵的频谱资源。

为什么要用这样宽频带的信号来传送信息呢?简单的回答就是主要为了通信的安全可靠。

扩频通信的基本特点,是传输信号所占用的频带宽度(W)远大于原始信息本身实际所

需的最小(有效)带宽(DF),其比值称为处理增益

G

p

(3.1)

GWD

pf

众所周知,任何信息的有效传输都需要一定的频率宽度,如话音为1.73.1kHz

电视图像则宽到数兆赫。为了充分利用有限的频率资源,增加通路数目,人们广泛选择不

同调制方式,采用宽频信道(同轴电缆、微波和光纤等),和压缩频带等措施,同时力求使

传输的媒介中传输的信号占用尽量窄的带宽。因现今使用的电话、广播系统中,无论是采

用调幅、调频或脉冲编码调制制式,值一般都在十多倍范围内,统称为“窄带通信”

G

p

而扩频通信的值,高达数百、上千,称为“宽带通信”

G

p

扩频通信的可行性,是从信息论和抗干扰理论的基本公式中引伸而来的。

信息论中关于信息容量的仙农(Shannon)公式为:

(3.2)

CWlog2(1PN)

式中:

C --- 信道容量(用传输速率度量)

W --- 信号频带宽度

P --- 信号功率

N --- 白噪声功率

3.2说明,在给定的传输速率C不变的条件下,频带宽度W和信噪比P/N是可以互

- 14 -

换的。也就是说,可通过增加频带宽度的方法,在较低的信噪比P/N(S/N)情况下,传输

信息。

扩展频谱换取信噪比要求的降低,正是扩频通信的重要特点,并由此为扩频通信的应

用奠定了基础。

扩频通信可行性的另一理论基础,为柯捷尔尼可夫关于信息传输差错概率的公式:

(3.3)

Pf(EN)

owj0

式中:

P

owj

--- 差错概率

E --- 信号能量

N--- 噪声功率谱密度

因为,信号功率 (T为信息持续时间)

PET

噪声功率 (W为信号频带宽度)

NWN

0

信息带宽

D1T

f

则式(3)可化为:

(3.4)

Pf(TP/N)=f(P/NWD)

owjw0f

3.4说明,对于一定带宽的信息而言,用值较大的宽带信号来传输,可以提

DG

fp

高通信抗干扰能力,保证强干扰条件下,通信的安全可靠。亦即式3.4与式3.2一样,

明信噪比和带宽是可以互换的。

总之,用信息带宽的100倍,甚至1000倍以上的宽带信号来传输信息,就是为了提

高通信的抗干扰能力,即在强干扰条件下保证可靠安全地通信。这就是扩展频谱通信的基

本思想和理论依据。

[4]

3.3 运用扩频码进行调制和解调

在时间上有限的信号,其频谱是无限的。例如很窄的脉冲信号,其频谱则很宽。信号

的频带宽度与其持续时间近似成反比。1微秒的脉冲的带宽约为1MHz因此,如果用限窄

的脉冲序列被所传信息调制,则可产生很宽频带的信号。

如下面介绍的直接序列扩频系统就是采用这种方法获得扩频信号。这种很窄的脉冲码

序列,其码速率是很高的,称为扩频码序列。这里需要说明的一点是所采用的扩频码序列

- 15 -

与所传信息数据是无关的,也就是说它与一般的正弦载波信号一样,丝毫不影响信息传输

的透明性。扩频码序列仅仅起扩展信号频谱的作用。

通过对扩频信号波形与频谱关系的分析和对PN码序列性能的了解,来说明获得扩频

信号的调制方法就比较容易了。一般说来,都是用高码率的PN码脉冲序列去进行调制扩

展信号的频谱的。

通常采用的调制方式为DPSK输入信号与PN码在平衡调制器调制而输出展宽的扩频

信号;

原始信号 DPSK调制 相乘 输出信号

PN

3.1 直序扩频系统的调制

正如在一般的窄带通信中,已调信号在接收端都要进行解调来恢复所传的信息。在扩

频通信中接收端则用与发送端相同的扩频码序列与收到的扩频信号进行相关解调,恢复所

传的信息。换句话说,这种相关解调起到解扩的作用。即把扩展以后的信号又恢复成原来

所传的信息。这种在发端把窄带信息扩展成宽带信号,而在接收端又将其解扩成窄带信息

的处理过程,会带来一系列好处。弄清楚扩频和解扩处理过程的机制,是理解扩频通信本

质的关键所在

3.4 扩频通信的主要性能指标

处理增益和抗干扰容限是扩频通信系统的两个重要性能指标。

理增益G也称扩频增益(Spreading Gain) 它定义为频谱扩展前的信息带宽DF与频带

扩展后的信号带宽W之比:

(3.5)

GWDF

在扩频通信系统中.接收机作扩频解调后,只提取伪随机编码相关处理后的带宽为

DF的信息,而排除掉宽频带W中的外部干扰、噪音和其地用户的通信影响。因此,处理

增益G反映了扩频通信系统信噪比改善的程度。

抗干扰容限是指扩频通信系统能在多大干扰环境下正常工作的能力,定义为:

- 16 -

(3.6)

MG[(SN)outLs]

j

其中:

M

j

--- 抗干扰容

C --- 处理增益

(SN)out

--- 信息数据被正确解调而要求的最小输出信噪比

Ls --- 接收系统的工作损耗

例如, 一个扩频系统的处理增益为35dB.要求误码率小于的信息数据解调的最

10

5

小的输出信噪比,系统损耗,则干扰容限

(SN)10dB

out

L3dB

s

M35(103)22dB

j

这说明,该系统能在干扰输入功率电平比扩频信号功率电平高22dB的范围内正常工

作,也就是该系统能够在接收输入信噪比大于或等于-22dB的环境下正常工作。

- 17 -

4 直序扩频系统的组成与原理

4.1 组成与原理

直序扩频(DS)系统就是最典型的扩展频谱通信系统,是扩频应用中最典型、最常

用的一种,其组成如图3.1所示,由发射机和接收机两部分组成

所谓直接序列(DS)扩频,就是直接用具有高码率的扩频码序列在发端去扩展信号的

频谱。而在接收端,用相同的扩频码序列去进行解扩,把展宽的扩频信号还原成原始的信

息。

B D

信息 调制 扩频 解扩 解调

B1B

2

2

PN码发生器

4.1 直序扩频系统原理图

假定发送的是一个频带限于以内的窄带信息。将此信息在信息调制器中先对某一

fin

副载额进行调制(例如进行调幅或窄带调频),得到一个中心频率为而带宽为

ff

00

2fin

信号,即通常的窄带信号。一般的窄带通信系统直接将此信号在发射机中对射频进行调制

后由天线辐射出去。

但在扩展频谱通信中还需要增加一个扩展频谱的处理过程。常用的一种扩展频谱的方

法就是用一高码率的随机码序列对窄带信号进行二相相移键控调制发送波形。二相相

f

c

移键控相当于载波抑制的调幅双边带信号。这样得到了带宽为的载波抑制的宽带信

2f

c

号。这一扩展了频谱的信号再送到发射机中去对射频进行调制后由天线辐射出去。

f

T

信号在射频信道传输过程中必然受到各种外来信号的干扰。因此,在收端,进入接收

- 19 -

机的除有用信号外还存在干扰信号。假定干扰为功率较强的窄带信号,宽带有用信号与干

扰信号同时经变频至中心频率为中频输出。不言而喻,对这一中频宽带信号必须进行

f

I

解扩处理才能进行信息解调。解扩实际上就是扩频的反变换,通常也是用与发端相同的调

制器,并用与发端完全相同的伪随机码序列对收到的宽带信号再一次进行二相相移键控。

再一次的相移键控正好把扩频信号恢复成相移键控前的原始信号。从频谱上看则表现

为宽带信号被解扩压缩还原成窄带信号。这一窄带信号经中频窄带滤波器后至信息解调器

再恢复成原始信息。但是对于进入接收机的变窄带干扰信号,在接收端调制器中同样也受

到伪随机码的双相相移键控调制,它反而使窄带干扰变成宽度干扰信号。由于干扰信号频

谱的扩展,经过中频窄带通滤波作用,只允许通带内的干扰通过,使干扰功率大为减少。

由此可见,接收机输入端的信号与噪声经过解扩处理,使信号功率集中起来通过滤波器,

同时使干扰功率扩散后被滤波器大量滤除,结果便大大提高了输出端的信号噪声功率比。

这一过程说明了直序扩频系统的基本原理和它是怎样通过对信号进行扩频与解扩处

理从而获得提高输出信噪比的好处的。它体现了直序扩频系统的抗干扰能力。

4.2 直序扩频码分多址通信系统

多址通信系统指的是许多用户组成的一个通信网,网中任何两个用户都可以通信,

且许多对用户同时通信时互不不扰。应用直序扩频系统就很容易组成这样一个多址通信系

()

具体的做法是给每一个用户分配一个PN码作为地址码。首先,利用直序扩频信号中

PN码的相关特性来区分不同的用户,每个用户只能收到其它用户按其地址码发来的信号,

此时自相关特性出现峰值,可以判别出是有用信号。对于其它用户发来的别的信号,因

PN码不同时互相关值很小,不会被解扩出来。其次,利用直序扩频信号中频谱扩展,功

率谱密度很低,因此可以有许多用户共享同一宽频带。此时相互之间干扰很小,可以当作

噪声处理。另外,每个用户平占用的频宽很窄,相对说来,频谱利用率也是高的。

实现直序扩频码分多址通信值得注意的问题有:

一是要选择有优良互相关特性的码。

一般多采用有二值或三值相关特性的码作为地址码。同时还需要有一定的数量。Gold

码就可以作为地址码来用,它既有较优良的相关特性,也有足够的数量可供选。

其二是要注意克服“远-近”问题。

所谓“远一近”问题指的是距离近的用户的信号强,它会干扰距离远的弱信号的接收。

- 20 -

解决的办法是采用自动功率控制,自动调节各用户的发射功率,使达到接收机时各用户信

号功率基本相等,也就是满足接收机输入端等功率的条件,才能正确地区分有用信号。

其三是同时通话的用户数,决定于整个网内的噪声水平。

因此,直序扩频码分多址系统是一种噪声受限的系统。随着用户数的增加,通信质量

逐渐变坏。

4.3 直序扩频系统的特点

直序扩频系统的特点有:

1)抗干扰性强

抗干扰是扩频通信主要特性之一,比如信号扩频宽度为100倍,窄带干扰基本上不起

作用,而宽带干扰的强度降低了100倍,如要保持原干扰强度,则需加大100倍总功率,

这实质上是难以实现的。因信号接收需要扩频编码进行相关解扩处理才能得到,所以即使

以同类型信号进行干扰,在不知道信号的扩频码的情况下,由于不同扩频编码之间的不同

的相关性,干扰也不起作用。正因为扩频技术抗干扰性强,美国军方在海湾战争等处广泛

采用扩频技术的无线网桥来连接分布在不同区域的计算机网络。

2)隐蔽性好

因为信号在很宽的频带上被扩展,单位带宽上的功率很小,即信号功率谱密度很低,

信号淹没在白噪声之中,别人难以发现信号的存在,加之不知扩频编码,很难拾取有用信

号,而极低的功率谱密度,也很少对于其它电信设备构成干扰。

3)易于实现码分多址(CDMA

直扩通信占用宽带频谱资源通信,改善了抗干扰能力,是否浪费了频段?其实正相反,

扩频通信提高了频带的利用率。正是由于直扩通信要用扩频编码进行扩频调制发送,而信

号接收需要用相同的扩频编码作相关解扩才能得到,这就给频率复用和多址通信提供了基

础。充分利用不同码型的扩频编码之间的相关特性,分配给不同用户不同的扩频编码,

可以区别不同的用户的信号,众多用户,只要配对使用自己的扩频编码,就可以互不干扰

地同时使用同一频率通信,从而实现了频率复用,使拥挤的频谱得到充分利用。发送者可

用不同的扩频编码,分别向不同的接收者发送数据; 同样,接收者用不同的扩频编码,

就可以收到不同的发送者送来的数据,实现了多址通信。美国国家航天管理局(NASA)

的技术报告指出:采用扩频通信提高了频谱利用率。另外,扩频码分多址还易于解决随时

增加新用户的问题。

4)抗多径干扰

- 21 -

无线通信中抗多径干扰一直是难以解决的问题,利用扩频编码之间的相关特性,在接

收端可以用相关技术从多径信号中提取分离出最强的有用信号,也可把多个路径来的同一

码序列的波形相加使之得到加强,从而达到有效的抗多径干扰。

5)直扩通信速率高

直扩通信速率可达 2M8M11M,无须申请频率资源,建网简单,网络性能好。

6)抗衰落

抗衰落,特别是频率选择性衰落,这是室内通信环境下必须解决的问题。由于直扩系

统的射频带宽很宽,小部分频谱衰落不会使信号频谱产生严重的畸变。7)远-近"效应"

远-近"效应对直扩系统的影响很大。这是因为虽然直扩系统有一定的处理增益,但

是由于有用信号的路径衰减很大,因而构成的威胁就小得多。

8)组网能力

扩频技术本身就具有一种多址能力-SSMA,属于CDMA,直扩系统具有很强的组网能

力。在移动通信中,CDMA系统的频谱利用率是模拟蜂窝传输系统的频谱利用率的二十多

倍,是第一代TDMA系统的六倍。直扩系统用不同的伪随机码可组成不同的网。从频谱利

用率上来看,直扩系统和跳频系统的频谱利用率比单频单信道系统还要高。

9)窄带系统的兼容性

直扩系统是一个宽带系统,虽然可与窄带系统电磁兼容,但不能与其建立通信。另外,

对模拟信源(如话音)需作预先处理(如语声编码后),才可接入直扩系统。

在这种技术中,伪随机码直接加入载波调制器的数据上。调制器似乎具有更大的比特

率,与伪随机序列的码片速率有关。用这样一个码序列调制射频载波的结果是产生一个中

心在载波频率、频谱为((sin x)/x)的直序调制扩展频谱。频谱主瓣(零点至零点)的带宽

2

是调制码时钟速率的两倍,旁瓣带宽等于调制码时钟速率。直序扩频系统靠伪随机码的相

关处理,降低进入解调器的干扰功率来达到抗干扰的目的。

关于扩频通信系统不怕干扰的问题:当无线电干扰信号进入接收机后,在解扩单元被

接收机的伪随机码展宽,频率展宽的过程在频域表达式表示为卷积。进行卷积的结果是将

干扰信号的带宽展宽为干扰信号加上PN码的带宽,从而导致干扰信号功率谱密度的降

低,经过窄带滤波器后进入接收机的解扩单元进行解码。由于干扰信号被卷积(扩频)

相对较宽,被窄带滤波器滤波,因此只有小部分干扰信号的能量进入接收机形成干扰;

有用信号由于发送端的扩频码和接收端的解扩码的相关则恢复成扩频前的窄带信号,通过

窄带滤波器时有用信号的能量没有损失,因此提高了系统的抗干扰性能。

- 22 -

5CMDA通信系统设计仿真

5.1 Simulik 简介

MATLAB 最初是Mathworks 公司推出的一种数学应用软件,经过多年的发展,开发了

包括通信系统在内的多个工具箱,从而成为目前科学研究和工程应用最流行的软件包之

一。Simulink MATLAB 中的一种可视化仿真工具,是实现动态系统建模、仿真和分析的

一个集成环境,广泛应用于线性系统、非线性系统、数字控制及数字信号处理的建模和仿

真中。它包括一个复杂的由接受器、信号源、线性和非线性组件以及连接件组成的模块库,

用户也可以根据需要定制或者创建自己的模块。Simulink 的主要特点在于使用户可以通

过简单的鼠标操作和拷贝等命令建立起直观的系统框图模型,用户可以很随意地改变模型

中的参数,并可以马上看到改变参数后的结果,从而达到方便、快捷地建模和仿真的目的。

另外,在世界范围内的模型化浪潮的背景下,Simulink恰恰体现了模块化设计和系

统级仿真的具体思想,使得建模仿真如同搭积木一样简单。Simulink对仿真的实现可以

应用于动力系统、信息控制、通信设计、金融财会及生物医学等各个领域的研究中。

Simulink实际上提供了一个系统级的建模与动态仿真的图形用户环境,并且凭借MATLAB

在科学计算上的天然优势,建立了从设计构思到最终要求的可视化桥梁,大大弥补了传统

设计和开发工具的不足。它可以使系统的输入变得相当容易且直观,同时可以容易地改变

输入信号的形式,对仿真算法和仿真参数的选择以及对输出结果的处理上也更加灵活自由

由于 Simulink可以很方便地创建和维护一个完整的模型,评估不同算法和结构并验证系

统性能,另外Simulink还可以与MATLAB中的DSP工具箱、信号处理工具箱以及通讯工具

箱等联合使用,进而实现软硬件的接口,从而成为实用的控制软件。SIMULINK是一个用

来对动态系统进行建模、仿真和分析的软件包,它支持连续、离散及两者混合的线性和非

线性系统,也支持具有多种采样频率的系统。在SIMULINK环境中,利用鼠标就可以在模

型窗口中直观地“画”出系统模型,然后直接进行仿真。它为用户提供了方框图进行建模

的图形接口,采用这种结构画模型就像你用手和纸来画一样容易。它与传统的仿真软件包

微分方程和差分方程建模相比,具有更直观、方便、灵活的优点。Simulink包含有SINKS

(输入方式)SOURCE输入源)LINEAR线性环节)NONLINEAR非线性环节)CONNECTIONS

(连接与接口)和EXTRA(其它环节)子模型库,而且每个子模型库中包含有相应的功能

- 23 -

模块。用户也可以定制和创建用户自己的模块。

Simulink创建的模型可以具有递阶结构,因此用户可以采用从上到下或从下到上

的结构创建模型。用户可以从最高级开始观看模型,然后用鼠标双击其中的子系统模块,

来查看其下一级的内容,以此类推,从而可以看到整个模型的细节,帮助用户理解模型的

结构和各模块之间的相互关系。在定义完一个模型后,用户可以通过Simulink的菜单或

MATLAB的命令窗口键入命令来对它进行仿真。菜单方式对于交互工作非常方便,而命令

行方式对于运行一大类仿真非常有用。采用SCOPE模块和其它的画图模块,在仿真进行的

同时,就可观看到仿真结果。除此之外,用户还可以在改变参数后来迅速观看系统中发生

的变化情况。仿真的结果还可以存放到MATLAB的工作空间里做事后处理。

模型分析工具包括线性化和平衡点分析工具、MATLAB的许多工具及MATLAB的应用工

具箱。由于MATLABSimulink的集成在一起的,因此用户可以在这两种环境下对自己的

模型进行仿真、分析和修改。

[5]

5.2 CDMA通信系统设计仿真

根据上述几章的论述,介绍了CDMA通信系统的原理及传输方法,根据这些介绍,

我们初步设计直序扩频系统原理图如下:

信息 调制 扩频 解扩 解调

PN码发生器

5.1直序扩频系统原理框图

在发射端,信息从信源传出,系统对信息进行调制,产生高频信号。PN码发生器产

生用于直接扩频的正交码组。扩频操作是调制后信号与用于扩频的码组直接相乘。扩频信

号通过信道传输进入接受端。解扩操作是把扩频信号与扩频码组直接相乘的到原有调制信

号。然后对调制信号进行解调。最终接受到信源所发出的信号。

[6]

通过Simulink进行仿真

- 24 -

5.2直接扩频的码分多址通信系统的仿真模型

如图所示是型。

直接扩频的码分多址通信系统的仿真模三个Bernoulli Random Integer

Generator(伯努利二进制随即信号发生器)表示三个不同用户发射各自的通信信息(基带

信号),码元宽度为0.01s,见表5.1。基带信号馈入载频为3000HzM-DPSK Modulator

Passband(带通M-DPSK调制器)PN Sequence Generator(伪随机序列发生器)产生用于直

接扩频的正交码组。它产生的是m序列,见表5.2m序列有很好的正交性(很强的自相

关性和很弱的互相关性)M序列的码元宽度为 即带信号码原宽度正好是m序列码元宽

度的30倍,正好是两个m序列周期。延迟4个码元及延迟7个码元的两个码组与原始的

码组构成三个正交码组,他们分别对三个用户信号进行直接扩频。扩频的操作是将基带信

号与用于扩频的码组直接相乘。扩频后的信号在Sum(相加器)中混合,并通过高斯白噪声

信道,见表5.8。信道的Es/No(信噪比)为-20dB的传输环境以后进入结合部分。这表现

了码分多址通信的特点:在同一时间、同一频段利用正交码组承载不同的用户的信息传输。

[7][8]

在接收端,信号优先进行解扩,应用了与发射端相同的码组进行解扩。因为码组有很

强的自相关性和很弱的互相关性,只是将受到相同码组扩频的信号提取出来。解扩的操作

与扩频的操作类似,将基带信号与用于解扩的码组直接相乘。解扩完成以后,进入M-DPSK

Demodulator Passband(带通M-DPSK解调器)进行解调,解调后的信号输入误码表。三个误

码表的接收延迟时间设为1,分别记录了经扩频、混合、解扩以后的各路信息失真情况。

- 25 -

5.2.1参数设置

模块名称Bernoulli Random Integer Generator

位置Communication Blockt Comm Sources

5.1 Bernoulli Random Integer Generator(伯努利二进制随即信号发生器)的参数设置

参数名称 参数值

M-ary number(元数) 2

Initial state(初始化种子) 12345

Sample time(采样时间) 0.01

5.3 Bernoulli Random Integer Generator(伯努利二进制随即信号发生器)的参数设置

模块名称 PN Sequence Generator

位置 Communication Blockt Comm Sources

5.2 PN Sequence Generator(伪随机序列产生器)的参数设置

参数名称 参数值

Generator polynomial(生成多项式) [1 1 1 1 0 1]

Initial state(初始状态) [0 0 1 0 0]

Shift(or mask)(移动) 0

Sample time(采样时间) 0.001/31

- 26 -

5.4 PN Sequence Generator(伪随机序列产生器)的参数设置框图

模块名称 Relay

位置SimulinkDiscontinuities

5.3 Relay(继电器)的主要参数

参数名称 参数值

Switch on point(大于等于时,开关打开) 0.5

Switch off point(小于等于时,开关关闭) 0.5

Output when on(开关打开时输出值) 1

Output when off(开关关闭时输出值) 1

Sampling time(采样时间) 1

- 27 -

5.5 Relay(继电器)的参数设置框图

模块名称M-PSK Modulator Passband

位置Communications Blockt ModulationDigital Passband Modulation

5.4 M-PSK

Modulator Passband(通带 M-PSK调制器)的主要参数

[9]

参数名称 参数值

M-ary number(元数) 2

Input type(输入类型) Bit

Constellation ordering(分布秩序) Binary

Symbol period(s)(符号周期) 0.01

Baband samples per symbol(每符号基带采样) 1

Carrier frequency(Hz)(载频) 3000

Carrier initial pha(rad)(载频初始相位) Pi/2

Output Sampling time(输出采样时间) 0.001/31

- 28 -

5.6 M-PSK Modulator Passband(通带 M-PSK调制器)的参数设置框图

模块名称M-PSK Demodulator Passband

位置Communications Blockt ModulationDigital Passband Modulation

5.5 M-PSK

Demodulator Passband(通带 M-PSK解调器)的主要参数

参数名称 参数值

M-ary number(元数) 2

Input type(输入类型) Bit

Constellation ordering(分布秩序) Binary

Symbol period(s)(符号周期) 0.01

Baband samples per symbol(每符号基带采样) 1

Carrier frequency(Hz)(载频) 3000

Carrier initial pha(rad)(载频初始相位) Pi/2

Output Sampling time(输出采样时间) 0.001/31

- 29 -

5.7 M-PSK Demodulator Passband(通带 M-PSK解调器)的参数设置框图

模块名称M-DPSK Modulator Passband

位置Communications Blockt ModulationDigital Passband Modulation

5.6M-DPSK Modulator Passband(通带 M-DPSK调制器)的主要参数

参数名称 参数值

M-ary number(元数) 2

Input type(输入类型) Bit

Constellation ordering(分布秩序) Binary

Symbol period(s)(符号周期) 0.01

Baband samples per symbol(每符号基带采样) 1

Carrier frequency(Hz)(载频) 3000

Carrier initial pha(rad)(载频初始相位) Pi/2

Output Sampling time(输出采样时间) 0.001/31

- 30 -

5.8 M-DPSK Modulator Passband(通带 M-DPSK调制器)的参数设置框图

模块名称M-DPSK Demodulator Passband

位置Communications Blockt ModulationDigital Passband Modulation

5.7 M-DPSK

Demodulator Passband(通带 M-DPSK解调器)的主要参数

[10]

参数名称 参数值

M-ary number(元数) 2

Input type(输入类型) Bit

Constellation ordering(分布秩序) Binary

Symbol period(s)(符号周期) 0.01

Baband samples per symbol(每符号基带采样) 1

Carrier frequency(Hz)(载频) 3000

Carrier initial pha(rad)(载频初始相位) Pi/2

Output Sampling time(输出采样时间) 0.001/31

- 31 -

5.9 M-DPSK Demodulator Passband(通带 M-PSK解调器)的参数设置框图

模块名称AWGN Channel

位置 Communication BlocktChannels

5.8 AWGN Channel(加性高斯白噪声信道)的主要的参数

参数名称 参数值

Initial ed(初始化种子) 1237

Mode (模型) Signal to noi ration(Es/No)

(信噪比)

Es/No(dB)(信噪比) -20

Input signal power(输入信号功率) 1

Symbol period(符号周期) 0.001/30

- 32 -

5.10 AWGN Channel(加性高斯白噪声信道)的参数设置框图

模块名称Error Rate Calculation

位置 Communication Blockt Comm Sinks

5.9 Error Rate Calculation(误码率计算)的主要参数

参数名称 参数值

Receive delay(接收延迟) 1

Communication delay(计算延迟) 0

Computation mode(计算模式) Entire frame

Output data(输出数据) Port

- 33 -

5.11Error Rate Calculation(误码率计算)的参数设置框图

模块名称 Display

位置 Simulink sinks

5.10 Display(显示器)的参数设置

参数名称 参数值

Format (数据形式) Short

decimation(显示抽取方式) 1

Sample time(采样时间) -1

- 34 -

5.12 Display(显示器)的参数设置框图

5.2.2仿真结果

5.13M-DPSK调制频谱图

- 35 -

5.14 M-PSK调制频谱图

5.15 scope所示波形对比

- 36 -

5.16scope1所示波形对比

5.17 M-DPSK调制波形

- 37 -

5.18解扩后 M-DPSK调制的波形

5.19 扩频后波形

- 38 -

5.20误码分析

三个误码表分别显示为:0.018 0.010.04

表示三个信号传输的误码率分别为1.8﹪,1﹪,4

5.3 总结

通过调试后信号的频谱图可以看出信号已被调制,载波进行扩频和解扩的波形图可以

看到信号进行扩频与解扩的过程。通过输入输出波形的对比可以发现信号基本被完全还

原,仍然有误码,这是由于直接序列扩频通信系统只是有效降低了噪声对信号的影响,

并没有消除。而且在DPSK调制解调过程中也同样能产生误码。

在接收端接收到了信源发出的信号,其误码率分别为1.8%1%4%。误码率基本符

合信号传输要求。由此可见,本设计所做的直序扩频码分多址通信系统能够实现信号的正

常传输,并且抑制了噪声对信号影响,降低了误码率。

- 39 -

参考文献

[1].周炯磐,庞沁华,续大我.通信原理. [M] 北京:北京邮电大学出版社.2005,452~488

[2].吴伟陵,牛凯.移动通信原理. [M] 北京:电子工业出版社.2006,37~47,205~216

[3].杨大成. 现代移动通信中的先进技术.[M] 北京:机械工业出版社.2005, 158~172

[4].何世彪,谭晓衡. 扩频技术及其实现[M] 北京:电子工业出版社. 2007.1.

[5].李建新,刘乃安,刘继平. 现代通信系统分析与仿真-MATALAB 通信工具箱.M]西安:西安电子

科技大学出版社,2001.

[6].史学军,于舒娟. MATLAB软件在CDMA通信仿真中的应用[J]. 电脑与信息技术,20031 28~30

[7].张媛媛,王家礼. CDMA基带信号发生器的设计与仿真[J]. 现代电子技术,200212 69~70

[8].张广森,王虎. CDMA通信系统的MATLAB仿真[J].天津通信技术 200293 29~32

[9].王立宁,乐光新,詹菲. MATLAB与通信仿真. [M] 北京:人民邮电出版社.2002,410~424

[10].徐明远.MATLAB仿真在通信与电子钟的应用[M].西安:西安电子科技大学出版社,2005. 6.

- 41 -

致谢

我做这篇毕业设计是在石慧老师的指导下完成的。

经过半年的忙碌和工作,本次毕业设计已经接近尾声,作为一个本科生的毕业设计,

由于经验的匮乏,难免有许多考虑不周全的地方,如果没有老师的督促指导,以及一起工

作的同学们的支持,想要完成这个设计是难以想象的。

在这里首先要感谢我的导师石慧老师。在我做毕业设计的每个阶段,从外出实习到查

阅资料,设计草案的确定和修改,中期检查,后期详细设计,装配草图等整个过程中都给

予了我悉心的指导。我的设计较为复杂烦琐,但是石慧老师仍然细心地纠正图纸中的错误。

除了敬佩石慧老师的专业水平外,她的治学严谨和科学研究的精神也是我永远学习的榜

样,并将积极影响我今后的学习和工作。

然后还要感谢大学四年来所有的老师,为我们打下通信工程专业知识的基础;同时还

要感谢所有的同学们,正是因为有了你们的支持和鼓励。此次毕业设计才会顺利完成。

[1]

[2]

700字优秀作文-我和我的父母

CDMA通信系统研究与仿真

本文发布于:2023-11-03 01:18:40,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/zhishi/a/169894552027199.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

本文word下载地址:CDMA通信系统研究与仿真.doc

本文 PDF 下载地址:CDMA通信系统研究与仿真.pdf

下一篇:返回列表
标签:窄带
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 实用文体写作网旗下知识大全大全栏目是一个全百科类宝库! 优秀范文|法律文书|专利查询|