
130
JOURNALOFATMOSPHERICANDOCEANICTECHNOLOGYV17
OLUME
AnOpticalDisdrometerforMeasuringSizeandVelocityofHydrometeors
¨
FFLERANGARTINO
-MML
Institutfu¨rMeteorologieundKlimaforschung,ForschungszentrumKarlsruhe,Universita¨tKarlsruhe,Karlsruhe,Germany
¨
RGOSSU
JJ
OsrvatorioTicine,SwissMeteorologicalInstitute,Locarno,Switzerland
(Manuscriptreceived15September1998,infinalform6May1999)
ABSTRACT
Thecharacteristicsofaprototypeopticaldisdrometerareprented.Particlesaredetectableinthediameter
rangefrom0.3to30mmhavingvelocitiesofupto20ms.Advantagesofthenewsystemare(i)itiseasy
Ϫ1
tohandle,robust,andlowcost,allowingaclusterofinstrumentstoinvestigatethespatialandtemporalfine-
scalestructureofprecipitation;(ii)itprovidesreliabledetectionoftherangeofsmalldrops;and(iii)itallows
thepossibilityofsnowmeasurements.ResultsofrainmeasurementsarecomparedwithdatafromaJoss–
WaldvogeldisdrometerandaHellmannraingauge.Furthermore,somesnowmeasurementsareprentedand
comparedwithresultsofarearchspectrometer.Theoverallagreementisgood.Therepeatabilityofparticle
sizeestimationwascheckedinthediameterrangebetween1.4and8.0mmandyieldedastandarddeviation
oflessthan5%.Fordropvelocitiesthestandarddeviationvariesbetween25%(0.3-mmdrops)and10%(5-mm
drops).Theopticaldisdrometercanalsorveasaprentweathernsor,detectinganddifferentiatingamong
rain,snow,drizzle,graupel,hail,andtheabnceofprecipitation.
1.Introductionniques.Ontheonehand,therearesingleparticlecoun-
Foryearsscientistsfrommanyfieldsofrearchhave
beeninterestedinmeasuringthesizeandvelocityof
particles.Alargenumberofdropsizinginstrumentsare
describedinliterature.Theycanbedividedintoveral
groups,dependingonthephysicalprincipleud.
Impacttechniquesarethebasisofthefirstgroupof
instruments.Earlyworkwithafiltermethodwasdone
byDiem(1956).Adisadvantageofthismethodwasthe
largeeffortneededtoevaluatethemeasurements.An-
otherinstrumentinthisgroupisthewell-knownJoss–
Waldvogeldisdrometer(JossandWaldvogel1967).It
iswidelyudasareferenceinstrumentforraininves-
tigations.
Acondgroupisbadonimagingtechniques.
Someexamplesofthearetheopticalarrayprobe
(Knollenberg1970),thethree-dimensionalholography
(BorrmannandJaenicke1993),thepluviospectrometer
(Franketal.1994)badonavideocamera,thevideo
distrometer(Scho¨nhuberetal.1994)withtwoline-scan
cameras,andtheparticlespectrometer(Barthazyetal.
1998),tomentionjustafew.
Athirdgroupusalargevarietyofscatteringtech-
ters,suchastheforwardscatteringprobe(Knollenberg
1981),pha-Dopplerinstruments(Bachalo1980;Dom-
nicketal.1993),orextinctionprobes(Hauretal.
1984;Grossklausetal.1998).Ontheotherhand,there
areinstrumentsthatprobesmallerorlargerparticlecol-
lectivesbymakinguofFraunhoferdiffraction(Gerber
1993;LawsonandCormack1995;Lo¨ffler-Mangetal.
1996;Lo¨ffler-Mang1998)orbymeasuringtheback-
scatterofradarwaves(Sheppard1990;Rogersetal.
1993;Lo¨ffler-Mangetal.1999).
Inthispaperthecharacteristicsofaprototypeoptical
disdrometer,badonsingleparticleextinction,arepre-
nted.Particlesaredetectableinthediameterrange
between0.3and30mm,havingvelocitiesofupto20
ms.Attributesofthesystemweprentareasfol-
Ϫ1
lows.
1)Itiseasytohandle,robust,andlowcost;therefore
itispossibletoinstallnetworksofdisdrometers,thus
making‘‘point’’measurementsmorereprentative
andinvestigatingsmall-scalevariability.
2)Smalldropsarereliablydetected.Thisisofinterest
forinvestigatingscavengingandchemicaleffects.
Furthermore,bychoosingdifferentversionsofthe
opticalsystemthemeasuringrangeofthensormay
bemodifiedtoalsoestimatethesizeofdrizzledrops
withdiametersdownto0.1mm.
3)Estimatesofthesizeandvelocityofsnowflakescan
Correspondingauthoraddress:MartinLo¨ffler-Mang,PMTechAG,
AmStorrenacker1a,D-76139,Karlsruhe,Germany.
E-mail:loeffler-mang@
᭧2000AmericanMeteorologicalSociety
F2000FFLER-MANGANDJOSSLO
EBRUARY
¨
131
T1.Specificationsoftheopticaldisdrometer.
ABLE
Sensorhead
Sizedϭ225mm,hϭ200mm
Weight5kg
Lardiodewavelength780nm
power3mW
Lightsheetsize30mmϫ1mmϫ160mm
Measuringarea48cm
2
Measuringrangediameter0.3–30mm(0.1–10mm)
velocity0.1–20ms
Ϫ1
Electronics
Size250mmϫ260mmϫ150mm
Weight5kg
Powersupply10–40VDCor100–230VAC
Powerconsumption10W
A/D–Converterresolution12bit
samplerate50ϫ10s
3
Ϫ1
Memorycapacity(internal)1monthofrain
Access,interfacePCviaRS232
beobtained.Thisinformationisufulfor‘‘prent
weathernsors’’andforinterpretingresultsfrom
weatherradarsystemsinwintertime,especiallyin
alpineregions,wherehydrometeorsintheradarvol-
umeusuallyconsistofsnow.
Section2describestheinstrument:generalattributes,
theopticalpartofthensor,thensorhousing,the
dataanalysis,andtheaccuracyachieved.Inction3
resultsfromfieldoperationsareprentedandcompared
withdatafromotherinstruments.Finally,ideasforthe
future,instrumentaldevelopment,andplannedappli-
cationsareoutlinedinction4.
2.Measuringsystemshowsthesignalsoftwoparticlesofdifferentsize.The
a.Attributesoftheinstrument
Thedisdrometerconsistsofanopticalnsorwithin
ahousingandsomeappropriateelectronicsincludingstartandtheendofasignalisimplementedinthesoft-
solidstatememory,whichallowsatleastonemonth’sware.
recordingofraindata.AttributesoftheinstrumentareGeometricalconsiderationsshowthattheeffective
summarizedinTable1.Thefollowingctionsexplainwidthofthelightsheetdependsontheparticlesize.To
themeasuringsysteminmoredetail.becompletelyinthelightsheet,largerparticleshavea
b.Opticalnsor
Thebasisoftheinstrumentisacommerciallyavail-
ablensor,producingahorizontalsheetoflight(30
mmwideand1mmhigh,160mmlong).Thelightsheet
isproducedbya780-nmlardiodewithapowerofTwodifferentprotectionshavebeentested.Atfirst,
3mW.Inthereceiverthelightsheetisfocudontoaahousing(Fig.2a)ofashapesimilartoaHellmann
singlephotodiode.Thetransmitterandreceiverareraingaugewasanalyzedfortherainmeasurements.
mountedinahousingforprotection(ection2c).InThen,forsnowmeasurementsatunnel-likehousingwas
theabnceofdropsthereceiverproducesa5-Vsignalud(Fig.2b).
attheoutputofthensor.ParticlespassingthroughtheTheHellmannhousinghasbeentested;forexample,
lightsheetcauadecreaofthissignalbyextinctiontheeffectsofwindwereinvestigatedingreatdetailby
andthereforeashortreductionofthevoltage.Thevolt-Nespor(1998).Furthermore,theHellmannhousinghas
agedecreadependslinearlyonthefractionofthelightarathersmalloutsidedimension,producingaminimum
sheetblocked.Figure1(upperpart)schematicallyofdisturbanceforrain,thoughonlyatverticalincidence.
F.1.Signalsofparticlesfallingthroughthelightsheet.(a)Small
IG
andlargeparticles,(b)rawsignalfromthensor,and(c)inverted
andamplifiedsignalafterthresholdingformeasuringpurpos.
amplitudeofthesignaldeviationisameasureofparticle
size,thedurationofthesignalallowsanestimateof
particlevelocity.Anappropriateconcepttodetectthe
smallerregioninhorizontaldirection.Therefore,toes-
timateconcentration,theeffectivewidthforeachpar-
ticleistakenintoaccount.
c.Sensorhousing
132
JOURNALOFATMOSPHERICANDOCEANICTECHNOLOGYV17
OLUME
F.2.(a)FrontandtopviewsofopticaldisdrometerinHellmann
IG
raingaugehousing.(b)Sideviewsofopticaldisdrometerintunnel
housing.
Inthefirsthousingthelightsheetisfoldedbytwoexitedthelightsheet.Thedistanceofinfluenceofa
mirrorstokeeptheinstrumentsizesmall.Thetunnelparticleisgivenbythelightsheetthicknessof1mm
housingmakesiteasytoasmblethensorandtoplustheparticlediameter(eFig.1).Theratioofthis
adjustthelightsheet.Finally,atfirstapproximationthedistanceandthesignaldurationyieldstheparticleve-
nsitivemeasuringareaisindependentofwindspeedlocity.
anddirection.Becauofthepossibilityofcoincidencesofparticles
d.Dataanalysis
Theanalysisofthesignal(Fig.1,middlepanel)con-forstrongrainandforrainwithalargenumberofdrops,
sistsofthefollowingsteps:removaloftheDCpart,coincidencesmayincreatoavaluethatisnotneg-
inversion,amplification,andfiltering(eFig.1,lowerligiblebutissosmallastobeeasilycorrected.Prob-
panel).ThenafastA/Dconversionisdone,followedabilitiesofcoincidencewerecalculatedforthreeex-
bythresholdingtodetectthestartofparticlesandtheir
maximumvalue.Theshadowsignaldurationandthe
timebetweentwoparticlesarealsorecorded.Thelast
threequantitiesarestoredforeachparticleforfurther
calculationofdistributions(size,velocity,energy,etc.)
aswellasintegralvalues(i.e.,rainrate,radarreflectiv-
ity,liquidwatercontent).Thetimeneededforthisanal-
ysisofoneparticleislessthan1ms.
Theopticalnsorwasoriginallydesignedforex-
tinctionmeasurementswithsignaldurationsofmore
than2ms.Forsnowflakesthisdurationisexceeded;
therefore,thedeviceneedsnocorrection.Thesizeofa
particleiscalculatedfromthemaximumreductionof
thesignal(reflectingtheblockedfractionofthelight
sheet).Theparticleisassumedtobesphericalwitha
diametercorrespondingtothewidthofthemaximum
blockedarea.Forsinglesnowflakes,whichmayhave
rathercomplicatedshapes,thisassumptionislesswell
fulfilledthanforraindrops.Butfortheenmblesmea-
suredduring60sormore,thestochasticalvariationis
reduced.
Calibrationisneededtodeterminethecharacteristics
oftheinternalelectronicsofthensor.Specialcareis
neededforsignalsoflessthan2-msduration.Notethat
typicalsizesandvelocitiesofraindropsleadtosignal
durationsbetween0.4and1.1ms.Becauoflimited
bandwidthoftheoff-the-shelfelectronicsud,there-
ductionofthemeasuredsignalamplitude(ascompared
tothetheoreticalamplitude)hastobecompensated.For
rainandhailmeasurements,thedevicewastherefore
calibratedwithparticlesofknownsize,fallingatter-
minalvelocity.Twenty-vendifferentsizesofglass
spheres,ethanol,andwaterdropsinsizerangesfrom
0.275to4.29mmwereud.Signalsofparticleswere
measuredinthelaboratoryafterafreefallinairofa
10-mheight.Fromeachsizesomehundredparticles
wereanalyzedindividually,thenthemedianvoltagefor
theparticlesizewascalculated.Thusanempiricalre-
lationbetweensizeandvoltagewasobtained.Thisre-
lationisudfortheevaluationofraindropsandhail.
Notethatthecalibrationalsotakesintoaccountthe
oblatenessoflargerraindrops.
Theparticlevelocityiscalculatedfromthesignal
duration.Thesignalstartswiththeparticleenteringthe
lightsheetandendswhentheparticlehascompletely
inthelightsheet,acorrectionisappliedtoestimatethe
realnumberconcentration(RaaschandUmhauer1984).
Fornormalrain,coincidencesarenotaproblem.But
F2000FFLER-MANGANDJOSSLO
EBRUARY
¨
133
tremeexamples,consideringdropswithdiametersbe-
tween0.3and5.5mm.Foranextremelystrongstrat-
iformrain(withsizedistributionparameterN
0
mmmandrainrateRϭ100mmh)itis10%,
ϭ8000
Ϫ3Ϫ1Ϫ1
foramostintensive‘‘drizzle’’(N
0
ϭ30000m
Ϫ3Ϫ1
mm,
Rϭ30mmh)9%,andforanextremeconvective
Ϫ1
shower(Nmm,Rϭ300mmh)itis
0
ϭ1400m
Ϫ3Ϫ1Ϫ1
5%.Similarmaximumvaluesofcoincidenceprobability
arefoundinsnow.
e.Accuracy
Anumberofeffectsinfluencetheaccuracyofdeter-
miningsizeandvelocity.Thehomogeneityofthelight
sheetwascheckedwitha1.0-mm-diameterwire.Fora
meansignalof130mV,avariationoflessthanϮ5mV
wasfoundwhenmovingtheverticalwirethroughthe
wholeareaofthelightsheet.Thenoisuperimpod
onthesignalisontheorderofϮ3mV.TheA/Dcon-
versionhasaresolutionof12bits(4096steps)for10
Vandasamplerateof50ϫ10s.Thesamplerate
3
Ϫ1
limitstheaccuracyoftheestimateofsignalduration;
thatis,itmainlyinfluencesvelocityerrors.
Therepeatabilitywascheckedwithtwodifferentsizes
ofsteelballs(5.52and8.03mmindiameter)andwith
asmallglasssphere(1.45mm).Thesameparticlewas
thrown100timesthroughthelightsheetwithavelocity
ofapproximately1ms
Ϫ1
.Inafirstexperimentthepo-
sitionwasalwaysinthemiddleofthesheetneartothe
transmittingnsor.Then,inacondexperiment,the
particleswererandomlypasdthroughthewholemea-
suringarea.Thefirstexperimentyieldedforallthree
particlesizesastandarddeviationofsizedetermination
below3%,thecondwassmallerthan5%.
Whenusingthe20sizeintervalsoftheJoss–Wald-
vogeldisdrometertoclassifydrops,theoverallerrorin
estimatingthediameterinthewholerangeofthein-
strumentdoesnotexceedϮ100
mplusϮ5%.Forthe
velocitymeasurementsofraindrops,theerrorsarewith-
in25%forthesmallestdrops(0.3mm)and10%for
largestdrops(5mm).
Whencalculatingintegralvaluessuchasrainrateand
radarreflectivity,theinstrumentalerrorsarereducedby
averaging,asverifiedbysimulations.Thestochastic
variationcaudbythequantizationofraindropsmay
exceedtheinstrumentalerrors.Itsmagnitudedepends
onthesamplesize,anattributevalidforalldropsizing
instruments(Smithetal.1993).
Fortheconsiderationsmisadjustmentoftheoptics,
waterordustonnsorwindows,dropsorting,ora
poorlydefinedmeasuringareacaudbyhighhorizontal
windspeedwerenottakenintoaccount.Theerror
sourcescanbereducedtoanegligiblesizebyproper
installationandmaintenanceoftheinstrument.
3.Resultsandcomparisonwithstandard
instruments
a.Rainmeasurements
Firstmeasurementsofraindropspectrawerecon-
ductedfromMaytoJuly1997.Theopticaldisdrometer
wasplaced50cmfromaJoss–Waldvogeldisdrometer
ontheroofofasmallbuildingintheForschungszen-
trumKarlsruhe.Tofacilitatecomparisonoftwoin-
struments,theresultsoftheopticaldisdrometerwere
calculatedintimeintervalsof1minforthe20class
ofdropsizeoftheJoss–Waldvogeldisdrometer.For
illustrationaconvectiveeventon21May1997inthe
earlymorninghourswaschon.Foreachinstrument
the10-minmeannumberdensitywascalculatedasa
functionofdropdiameter(Fig.3).Thereisgoodagree-
mentbetweenthemeasurementsoftheopticalandthe
Joss–Waldvogeldisdrometerinthediameterrange
from0.7to2mm.
Theca,however,showsdifferencesintherangeof
smalldrops.Strongwindsand/oracousticnoimay
inhibitdetectionofthelowerendofthedropsizewith
theJoss–Waldvogeldisdrometer(thisdeviceoriginally
wasdesignedforthedeterminationofZ–Rrelations).
Thispartofthespectrumhaslessinfluenceonrainrate
andradarreflectivity,butmaybeimportantforcloud
physicsaspectsandwashoutofpollutantsbyrain.
Forlargerdropstheconcentrationisratherlow.
Therefore,thestandarddeviationistoolargeforasafe
interpretation(eerrorbars).Notealsothattheinstru-
mentsdidnotmeasuretheidenticaldrops.
For1hthetimeriesoftherainrate,calculated
fromthedropsizedistributions,isprentedforboth
disdrometersinFig.4.Itshowsastrongconvective
eventintheafternoonof5July1997between1600and
1700CETwithadurationofthree-quartersofanhour,
reachingrainratesof20to30mmh
Ϫ1
.Thequantitative
agreementbetweenthetwodisdrometersisquitegood,
consideringtheaccuracyoftheinstruments(around
10%fortherainrate).
Theintercomparisonofdailyrainsums,measuredby
bothdisdrometersandaHellmannraingauge,arecom-
paredinthehistogramofFig.5.For10daysofthe
timespanbetweenMayandJuly1997dataofallthree
measuringdevicesareavailable.Formostofthedays,
thedailysumsagreewithin1mmofrainamount.In8
outof10castheJoss–Waldvogeldisdrometershowed
slightlyhigher(10%)valuesthantheopticaldisdro-
meterandtheHellmannraingauge.Theagreementbe-
tweenthelasttwoinstrumentsisnotsurprisingbecau
theopticaldisdrometerandHellmanngaugealsohave
nearlyidenticalhousingswithsimilarwindeffects.
Whenlookingatdailyrainsums,theobrvedsample
ofdropsislargeandstochasticvariationscaudbythe
quantizationofrainbydropsbecomenegligible.Then
theobrvedvariationsreflectsystematicinstrumental
differences.Thevariationsofrainamountmeasured
withtheopticaldisdrometeraresimilartothoofthe
134
JOURNALOFATMOSPHERICANDOCEANICTECHNOLOGYV17
OLUME
F.3.Meanspectralnumberdensityvsdropdiameter,0611–0620CET21May1997;
IG
comparisonofopticaldisdrometer(solidline)andJoss–Waldvogeldisdrometer(dashedline).
Joss–WaldvogeldisdrometerandtheHellmannrainimately29000measureddropsof5July1997isplotted.
gauge,knowntobeintheorderof10%whenmeasuringEachdropresultsinapointofthediagram.Thedashed
dailyrainsums.Nespor(1998)discusdtheinfluencelineinFig.6alsoshowstheempiricalrelationfrom
ofthewind.Atlasetal.(1973)afterthemeasurementsfromGunn
TheopticaldisdrometermeasuressizeandvelocityandKinzer(1949).Themeasurementsscattersignifi-
ofsingleparticles,allowingavelocity–sizecorrelation.cantlyaroundtheempiricalcurve.Thisscatteriscaud
InFig.6,velocityversusdropdiameterfortheapprox-byturbulenceofairclotothegroundinfluencingthe
F.4.Timeriesofrainrateduring1600–1700CET5Jul1997;comparisonofoptical
IG
disdrometer(solidline)andJoss–Waldvogeldisdrometer(dashedline).
F2000FFLER-MANGANDJOSSLO
EBRUARY
¨
135
F.5.Dailyrainsumsof10daysduringMay–Jul1997;comparisonofopticaldisdrometer,
IG
Joss–Waldvogeldisdrometer,andconventionalHellmannraingauge.
F.6.Dropvelocityvsdropdiameterfor5Jul1997:eachpointreprentsthevelocityand
IG
thesizeofasingledrop(totalnumberofdrops:ഠ29000);comparisonwithempiricalcurveof
Atlas(1973)afterGunnandKinzer(1949):ϭ9.65Ϫ10.3e.
Ϫ0.6D
136
JOURNALOFATMOSPHERICANDOCEANICTECHNOLOGYV17
OLUME
F.7.(a)Spectralnumberdensityvssnowflakediameterfor5-hinterval,0900–1400CET
IG
1Mar1998;comparisonofopticaldisdrometer(solid)andETHparticlespectrometer(dashed).
(b)Meanvelocityofparticlesinsizeclassvssnowflakediameterfortheperiodin(a),comparison
ofopticaldisdrometer(squares),ETHparticlespectrometer(cross),andempiricalcurve(dashed
line,LocatelliandHobbs1974).
fallvelocityand,probablymoreimportant,byinstru-Thecutoffatlowvelocitiesresultsfromthemaximum
mentallimitations,suchastheuncertaintiescaudbyvalueofdetectedsignaldurations,whichwas2.54ms
quantizationandthresholding.Thecutoffatapproxi-(127A/Dconversiontimesteps)forrainmeasurements.
mately0.3-mmdropdiameterresultsfromthetriggerSomehundreddatapointscanbeenintherange
leveludtodetectthedrops(atriggerlevelisnecessarydirectlyabovethecutoffline.Thesignalsweremainly
toparatedropsignalsfromnoi);theline-by-lineproducedbydropssplashingonthehousingand,there-
structureofthedatapointscomesfromthe20-stimefore,havingunrealisticallylowvelocities.Theycould
resolutionoftheA/Dconversion.beremovedbyplausibilityconsiderations.
F2000FFLER-MANGANDJOSSLO
EBRUARY
¨
137
F.8.Ten-minmeansofradarreflectivityvstime,0900–1400CET1Mar1998;comparison
IG
ofopticaldisdrometer(solid),ETHparticlespectrometer(dashed),andETHX-bandDopplerradar
100mabovegroundlevel(dotted).
b.Snowmeasurementsinginstrumentsestimatethevelocitiesclearlyabovethe
DuringFebruaryandMarch1998,anumberofrain
andsnoweventswereinvestigatedinLinthalinthe
SwissAlps.On1March1998apredominantlystrati-
formsnowfallwasrecordedwiththeopticaldisdrometer
(withtunnelhousing),theETHparticlespectrometer
(SwissFederalInstitute,Zu¨rich;Barthazyetal.1998),
andverticallypointingX-bandDopplerradar(Mosi-
mannetal.1993).For5htheechotopwasdetected
bytheradarataheightof2.7kmabovegroundlevel.
Atippingbucketmeasured5mmofprecipitation.
Forbothdisdrometersspectralnumberdensitieswere
calculatedasfunctionsofparticlesize.Distributions
wereintegratedover10min.Inaddition,themeanpar-
ticlevelocityforeachsizeclasswascalculatedassuming
asphericalshape.Theparticlesizewasassumedtobe
themaximumhorizontaldimensionofthesnowflake
en.Duringthe5hofobrvationbothinstruments
showedsimilarbehavior.
Fortheintercomparisonthemeansizedistribution
forthe5-hperiodisshowninFig.7a,themeanparticle
velocitiesinFig.7b.Thenumberdensities(size)ofthe
twoinstrumentsagreewellinmostsizeclass.Dif-
ferencesoccuratthesmalldiameterend,wherethe
opticaldisdrometerwasnotnsitiveinthefirsttwo
classcaudbythetriggerlevelud.Thiserrorhas
beenrecognizedandcorrected.Atthelargediameter
endonlytheopticaldisdrometermeasuredasingle
snowflakeinthesizeclassof12–14mm.Comparedto
anempiricalvelocity–sizerelationϭ0.8D(Fig.
0.16
7b),takenfromLocatelliandHobbs(1974),theesti-
matedvelocitiesshowsignificantdifferences.Bothsiz-withreflectivitiesfromtheverticallypointingX-band
empiricalcurve,especiallyforthelargersnowflakes.
Thiscouldbesimplybecauthesnowflakesinvesti-
gatedinSwitzerlandweredifferentfromthofound
byLocatelliandHobbs.Ontheotherhand,iftheob-
rvedsnowflakesweremorebroadthanhigh(thever-
ticalextentofthesnowflakesisshorterthanthemea-
suredwidth),thiswouldresultinanoverestimateofthe
fallspeedofparticleslargerthanthethicknessofthe
lightsheet.Itsthicknessintheopticaldisdrometeris1
mm,intheETHparticlespectrometeronly0.15mm.
Thisdifferencemaycontributetothedifferencebetween
thetwoinstrumentsandthedashedrelation(forden-
dritesaccordingtoLocatelliandHobbs1974).Itwould
alsoexplainwhythespeedofsmallersnowflakeses-
timatedwiththeopticaldisdrometercomesclortothe
empiricalcurvethanwiththeETHparticlespectrom-
eter.
Finally,radarreflectivityfactorswerederivedfrom
theparticlesizedistributionsassuggestedbySmith
(1984),withtheassumptionthattheradarcrossction
ofanirregularparticleisthesameasthatofasphere
ofthesamemass(thenheudanartificefromMarshall
andGunn1952).Whenusingtheequivalentdiameter
ofmelteddrops,thedielectricfactorhastobemultiplied
by1.18tocompensateforthedensityofwaterwith
respecttoice,resultinginthevalue0.208insteadof
0.176.Forthemassdeterminationofsnowflakesagain
arelationaccordingtoLocatelliandHobbs(1974)was
ud:Mϭ0.059D
2.1
.Averagesover10minofradar
reflectivityversustimeareshowninFig.8,together
138
JOURNALOFATMOSPHERICANDOCEANICTECHNOLOGYV17
OLUME
F.9.Schematicconceptforusingvelocityandsizeinformationtodetectthedifferenttypes
IG
ofhydrometeors.
radarmeasured100mabovegroundlevel.Theresults
ofthedisdrometersagreewellwitheachother,but
sometimesthereisadiscrepancyofupto5dBofthetoobtaininformationontheprecipitationprocess.
valuesmeasuredwithradar.Thedifferencemaybe
caudbysomewetnessofthesnoworevenmoreby
changesoftheparticletype.Firstestimationshave
shownthattheuofdifferentmass–sizerelations(re-
latedtodifferentparticletypes)hasastronginfluence
ontheradarreflectivityderivedfromparticlesizedis-
tributions.Forasinglesizedistribution,variationsof
upto20dBarepossible.Obviouslythereisaneedfor
additionalrearchonhowtoderiveradarreflectivity
factorsforsnowflakes.
4.Summaryandfuturedevelopment
Anopticaldisdrometerwasprentedandresults
fromrainandsnowwerecomparedwithdatafroma
Joss–Waldvogeldisdrometer,aHellmannraingauge,
andaparticlespectrometer.Theoverallagreementis
good.
Theerrorindeterminingsizeinthewholerangedoes
notexceedϮ100mplusϮ5%.Thiswasverifiedwhen
comparingdropconcentrationinthe20sizeclassof
theJoss–Waldvogeldisdrometer.Theerrorlimitsare
expectedtoalsobevalidforsizeclassabovetho
recognizedbytheJoss–Waldvogeldisdrometer.Forthe
velocitymeasurements,theerrorforthesmallestdrops
(0.3mm)yieldsvaluesof25%andgoesdownto10%
forthelargestdrops(5mm).Fordailyrainsumsthe
standarddeviationbetweeninstrumentsisaround10%.anonymousreviewers.
Futureworkmayincludeaspectsofinstrumentalim-
provementaswellastheapplicationoftheinstrument
1)Instrumentalwork:
Rinvestigatethevalueofthevelocityinformation
toidentifyandeliminateedgeeffects,
Restimateeffectsofdropssplashingonthehousing,
and
Rtestamodifiednsortoextendthemeasuring
rangetowardsmalldrizzledrops.
2)Applications:
Rcollectmoreexperienceinmeasuringrainand
snow,
Rmakeuofthecombinedvelocity–sizeinfor-
mationfordetectingthetypeofhydrometeor(e
Fig.9),
Ranalyzestrongprecipitationeventsanddeducea
measureforsoilerosionbylargeraindrops,and
Rinvestigatethereprentativityofpointmeasure-
mentsbycombiningtheresultsofanumberof
identicalinstrumentsoperatedsimultaneously.
Acknowledgments.WewouldliketothankF.Fiedler
formakingthedevelopmentoftheinstrumentpossible.
Furthermore,thankstoE.Barthazyforpreparingthe
snowmeasurementswiththeETHparticlespectrometer
andDopplerradar,andtoJ.Handwerkerforsimulating
instrumentalerrors.Additionally,wewouldliketoex-
pressourappreciationforthehelpfulcommentsofthree
F2000FFLER-MANGANDJOSSLO
EBRUARY
¨
139
REFERENCES
Atlas,D.,R.Srivastava,andR.Sekhon,1973:Dopplerradarchar-
acteristicsofprecipitationatverticalincidence.Rev.Geophys.
SpacePhys.,11,1–35.
Bachalo,W.D.,1980:Methodformeasuringthesizeandvelocity
ofspheresbydual-beamlightscatterinterferometry.Appl.Opt.,
19,363–389.
Barthazy,E.,W.Henrich,andA.Waldvogel,1998:Sizedistribution
ofhydrometeorsthroughthemeltinglayer.Atmos.Res.47–48,
193–208.
Borrmann,S.,andR.Jaenicke,1993:Applicationofmicroholography
forground-badinsitumeasurementsinstratuscloudlayers:
Acastudy.J.Atmos.OceanicTechnol.,10,277–293.
Diem,M.,1956:MessungenderGro¨ßederRegentropfeninnatu¨r-
lichenRegenundbeiku¨nstlicherBeregnung(Measurementsof
raindropsizeinnaturalandartificialrain).Beitr.Naturk.Forsch.
Su¨ddeutschland,15,75–90.
Domnick,J.,C.Tropea,andR.Wagner,1993:Aminiaturizedmi-
conductorfiberopticpha-Doppleranemometer(DFPDA)with
applicationstoliquidsprays.Meas.Sci.Technol.,4,411–415.
Frank,G.,T.Ha¨rtl,andJ.Tschiersch,1994:Thepluviospectrometer:
Classificationoffallinghydrometeorsviadigitalimageproc-
cessing.Atmos.Res.,34,367–378.
Gerber,H.,1993:In-cloudmeasurementsofeffectivedropletradius.
J.AerosolSci.,24,583–584.
Grossklaus,M.,K.Uhlig,andL.Has,1998:Anopticaldisdrometer
foruinhighwindspeeds.J.Atmos.OceanicTechnol.,15,
1051–1059.
Gunn,R.,andG.Kinzer,1949:Theterminalvelocityoffallforwater
dropletsinstagnantair.J.Meteor.,6,243–248.
Haur,D.,P.Amayenc,B.Nutten,andP.Waldteufel,1984:Anew
opticalinstrumentforsimultaneousmeasurementofraindrop
diameterandfallspeeddistributions.J.Atmos.OceanicTech-
nol.,1,256–269.
Joss,J.,andA.Waldvogel,1967:EinSpektrographfu¨rNiederschlags-
tropfenmitautomatischerAuswertung(Aspectrographforrain
dropswithautomaticalanalysis).PureAppl.Geophys.,68,240–
246.
Knollenberg,R.G.,1970:Theopticalarray:Analternativetoscat-
teringorextinctionforairborneparticlesizedetermination.J.
Appl.Meteor.,9,86–103.
,1981:Techniquesforprobingcloudmicrostructure.Clouds:inraindropsizeobrvations.J.Appl.Meteor.,32,1259–1269
TheirFormation,OpticalPropertiesandEffects,P.V.Hobbs
andA.Deepak,Eds.,AcademicPress,15–91.
Lawson,R.P.,andR.H.Cormack,1995:Theoreticaldesignand
preliminarytestsoftwonewparticlespectrometersforcloud
microphysicsrearch.Atmos.Res.,35,315–348.
Locatelli,J.D.,andP.V.Hobbs,1974:Fallspeedsandmassof
solidprecipitationparticles.J.Geophys.Res.,79,2185–2197.
Lo¨ffler-Mang,M.,1998:Alar-opticaldeviceformeasuringcloud
anddrizzledropsizedistributions.Meteor.Z.,7,53–62.
,K.D.Beheng,andH.Gysi,1996:Dropsizedistributionmea-
surementsinrain—Acomparisonoftwosizingmethods.Meteor.
Z.,5,139–144.
,M.Kunz,andW.Schmid,1999:Ontheperformanceofalow-
costK-bandDopplerradarforquantitativerainmeasurements.
J.Atmos.OceanicTechnol.,16,379–387
Marshall,J.S.,andK.L.S.Gunn,1952:Measurementofsnow
parametersbyradar.J.Meteor.,9,322–327.
Mosimann,L.,M.Steiner,andW.Henrich,1993:Predictionofsnow
crystalshapeandrimingbyverticallypointingDopplerradar.
Atmos.Res.,29,85–98.
Nespor,V.,1998:Windinducederrorofprecipitationgauges.Op-
erationaluofradarforprecipitationmeasurementsinSwit-
zerland.FinalRep.NRP31,91–101.[AvailablefromtheSwiss
FederalInstituteofTechnologyZu¨rich,ETHZentrum,CH-8092
Zu¨rich,Switzerland.]
Raasch,J.,andH.Umhauer,1984:Errorsinthedeterminationof
particlesizedistributionscaudbycoincidencesinopticalpar-
ticlecounters.Part.Charact.,1,53–58.
Rogers,R.R.,D.Baumgardner,S.A.Ethier,D.A.Carter,andW.
L.Ecklund,1993:Comparisonofraindropsizedistributions
measuredbyradarwindprofilerandbyairplane.J.Appl.Me-
teor.,32,694–699.
Scho¨nhuber,M.,U.Urban,J.P.VPoiaresBabtista,W.L.Randeu,
andW.Riedler,1994:Measurementsofprecipitationcharacter-
isticsbyanewdistrometer.Proc.Conf.onAtmosphericPhysics
andDynamicsintheAnalysisandPrognosisofPrecipitation
Fields,Rome,Italy.
Sheppard,B.,1990:Measurementofraindropsizedistributionsusing
asmallDopplerradar.J.Atmos.OceanicTechnol.,7,255–268
Smith,P.L.,1984:Equivalentradarreflectivityfactorsforsnowand
iceparticles.J.ClimateAppl.Meteor.,23,1258–1260.
,Z.Liu,andJ.Joss,1993:Astudyofsampling-variabilityeffects

本文发布于:2023-11-24 12:47:43,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/zhishi/a/1700801263234605.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:An Optical Disdrometer for Measuring Size and Velocity of Hydrome.doc
本文 PDF 下载地址:An Optical Disdrometer for Measuring Size and Velocity of Hydrome.pdf
| 留言与评论(共有 0 条评论) |