Routers with Very Small Buffers_免费下载

更新时间:2023-11-24 10:13:19 阅读: 评论:0

每天给自己一个希望-孔道

Routers with Very Small Buffers_免费下载
2023年11月24日发(作者:农行面试)

STANFORDHPNGTECHNICALREPORTTR05-HPNG-0606061

RouterswithVerySmallBuffers

MihaelaEnachescu,YasharGanjali,AshishGoel,NickMcKeown,andTimRoughgarden

DepartmentofComputerScience,StanfordUniversity

{}

mihaela,timr@

DepartmentofElectricalEngineering,StanfordUniversity

{}

yganjali,nickm@

DeptofManagementScienceandEngineering,StanfordUniversity

ashishg@

AbstractInternetroutersrequirebufferstoholdpackets

duringtimesofcongestion.Thebuffersneedtobefast,and

soideallytheyshouldbesmallenoughtoufastmemory

technologiessuchasSRAMorall-opticalbuffering.Unfortu-

nately,awidelyudrule-of-thumbsaysweneedabandwidth-

delayproductofbufferingateachroutersoasnottololink

utilization.Thiscanbeprohibitivelylarge.Inarecentpaper,

Appenzelleretal.challengedthisrule-of-thumbandshowedthat

forabackbonenetwork,thebuffersizecanbedividedbyN

withoutsacrificingthroughput,whereNisthenumberofflows

sharingthebottleneck.Inthispaper,weexplorehowbuffersin

thebackbonecanbesignificantlyreducedevenmore,toaslittleas

afewdozenpackets,ifwearewillingtosacrificeasmallamount

oflinkcapacity.WearguethatiftheTCPsourcesarenotoverly

bursty,thenfewerthantwentypacketbuffersaresufficientfor

highthroughput.Specifically,wearguethatO(logW)buffersare

sufficient,whereWisthewindowsizeofeachflow.Wesupport

ourclaimwithanalysisandavarietyofsimulations.Thechange

weneedtomaketoTCPisminimal—eachnderjustneeds

topacepacketinjectionsfromitswindow.Moreover,thereis

someevidencethatsuchsmallbuffersaresufficientevenifwe

don’tmodifytheTCPsourcessolongastheaccessnetworkis

muchslowerthanthebackbone,whichistruetodayandlikely

toremaintrueinthefuture.

Weconcludethatbufferscanbemadesmallenoughforall-

opticalrouterswithsmallintegratedopticalbuffers.

I.MI

OTIVATIONANDNTRODUCTION

Untilquiterecently,Internetrouterswerewidelybelievedto

needlargebuffers.Commercialrouterstodayhavehugepacket

buffers,oftenstoringmillionsofpackets,undertheassumption

thatlargebuffersleadtogoodstatisticalmultiplexingand

henceefficientuofexpensivelong-haullinks.Awidely-ud

rule-of-thumbstatesthat,becauofthedynamicsofTCP’s

congestioncontrolmechanism,arouterneedsabandwidth-

delayproductofbuffering,B=RTT×C,inordertofully

utilizebottlenecklinks[5],[6],[16].Here,Cisthecapacityof

thebottlenecklink,Bisthesizeofthebufferinthebottleneck

router,andRTTistheaverageround-trippropagationdelayof

aTCPflowthroughthebottlenecklink.Recently,Appenzeller

etal.propodusingtheruleB=RTT×C/Ninstead,

whereNisthenumberofflowsthroughthebottleneck

link[3].Inabackbonenetworktoday,Nisofteninthe

thousandsorthetensofthousands,andsothesizingrule

B=RTT×C/Nresultsinsignificantlyfewerbuffers.

Inthispaper,weexploreifandhowwecouldbuildaWeassumethateachTCPflowdeterminesitswindowsize

networkwithmuchsmallerbuffersstill—perhapswithonlyusingthestandardTCPAIMDscheme.However,ifthecurrent

afewdozenpacketbuffersineachrouter,andperhapsatthe

expenof100%linkutilization.Whilethisisaninteresting

intellectualexerciinitsownright,therewouldbepractical

conquencesifitwerepossible.

First,itcouldfacilitatethebuildingofall-opticalrouters.

Withrecentadvances[8],[9],[13],itisnowpossibleto

performall-opticalswitching,openingthedoortorouterswith

hugecapacityandlowerpowerthanelectronicrouters.Recent

advancesintechnologymakepossibleopticalFCFSpacket

buffersthatcanholdafewdozenpacketsinanintegrated

opto-electronicchip[13].Largerall-opticalbuffersremain

infeasible,exceptwithunwieldyspoolsofopticalfiber(that

canonlyimplementdelaylines,nottrueFCFSpacketbuffers).

Weareinterestedinexploringthefeasibilityofanoperational

all-opticalnetworkwithjustafewdozenopticalpacketbuffers

ineachrouter.

Second,ifbigelectronicroutersrequiredonlyafewdozen

packetbuffers,itcouldreducetheircomplexity,makingthem

easiertobuildandeasiertoscale.Atypical10Gb/srouter

linecardtodaycontainsaboutonemillionpacketbuffers,using

manyexternalDRAMchips.TheboardspacetheDRAMs

occupy,thepinstheyrequire,andthepowertheydissipateall

limitthecapacityoftherouter[3].Ifafewdozenpacket

bufferssuffice,thenpacketbufferscouldbeincorporated

insidethenetworkprocessor(orASIC)inasmallon-chip

SRAM;infact,thebufferswouldonlyoccupyatinyportion

ofthechip.Notonlywouldexternalmemoriesberemoved,

butitwouldallowtheuoffaston-chipSRAM,whichscales

inspeedmuchfasterthanDRAM.

OurmainresultisthatminormodificationstoTCPwould

indeedallowustoreducebuffer-sizestodozensofpackets

withtheexpenofslightlyreducedlinkutilization.Weobtain

thisresultinasuccessionofsteps.Wewillstartbyadopting

twostrongassumptions:(1)Thatwecouldmodifytheway

packetsaretransmittedbyTCPnders,and(2)Thatthe

networkisover-provisioned.However,wewillsoonrelax

theassumptions.

Westartbyaskingthefollowingquestion:Whatifwe

kepttheAIMD(AdditiveIncreaMultiplicativeDecrea)

dynamicsofTCPwindowcontrol,butchangedtheTCP

transmissionschemeto“spaceout”packettransmissionsfrom

theTCPnder,therebymakingpacketarrivalslessbursty?

STANFORDHPNGTECHNICALREPORTTR05-HPNG-0606062

windowsizeattimetisWandthecurrentround-tripestimatethenetworkbeingover-provisioned.Weconsiderasingle

isRTT,thenweassumetheTCPnderndsaccordingtobottlenecklink,andassumethatifeachflowweretondat

aPoissonprocessofrateW/RTTattimet.Thisresultsinitsmaximumwindowsize,thenthelinkwouldbeverely

thesameaveragerateasndingWpacketsperRTT.Whilecongested.Inoursimulations(prentedinSectionIV),

thisisaslightlyunrealisticassumption(itcanresultinthePacedTCPresultsinhighthroughput(around70-80%)with

windowsizebeingviolatedandsomightalterTCPbehaviortherelativelysmallbuffers(10-20)predictedbythesimple

inundesirableways),thisscenarioyieldsimportantcluesabout

thefeasibilityofverysmallbuffers.toextendourformalanalysistotheunder-provisionednetwork

Wearealsogoingtoassumethatthenetworkisover-

provisioned—evenifeachflowisndingatitsmaximum

windowsize,thenetworkwillnotbecongested.Underthe

1

assumptions,weshowthatabuffersizeofO(logW)

max

packetsissufficienttoobtainclotopeakthroughput,where

Wisthemaximumwindowsizeinpackets.Someelements

max

oftheproofareinterestingintheirownright.Theexact

2

scenarioisexplainedinSectionIIandtheproofitlfisin

AppendixI.

Togetsomefeelforthenumbers,considerthescenario

where1000flowssharealinkofcapacity10Gbps.Assume

thateachflowhasanRTTof100ms,amaximumwindow

sizeof64KB,andapacketsizeof1KB.Thepeakrateis

roughly5Gbps.Thebandwidth-delayproductrule-of-thumb

suggestsabuffersizeof125MB,oraround125,000packets.

C/TheRTT×Nrulesuggestsabuffersizeofaround3950

packets.Ouranalysissuggestsabuffersizeoftwelvepackets

plussomesmalladditiveconstant,whichbringsthebuffersize

downtotherealmwhereopticalbufferscanbebuiltinthe

nearfuture.

Wethensystematicallyremovethetwoassumptionswe

madeabove,usingacombinationofsimulationsandanalysis.

WefirsttackletheassumptionthatTCPndspacketsina

locallyPoissonfashion.Intuitively,ndingpacketsatfixed

(ratherthanrandom)intervalsshouldgiveusthesamebenefit

(orbetter)asndingpacketsataPoissonrate.Accordingly,

westudythemorereasonablecawheretheTCPnding

agent“paces”itspacketsdeterministicallyoveranentire

RTT.PacedTCPhasbeenstudiedbefore[2],anddoesnot

sufferfromtheproblemofovershootingthewindowsize.

WeperformanextensivesimulationstudyofpacedTCP

withsmallbuffers.Whenthenetworkisover-provisioned,

theperformanceofpacedTCPclolymirrorsouranalytical

boundofO(logW)forPoissonsources.Thisholdsfor

max

awiderangeofcapacitiesandnumberofflows,andnot

justintheregimewhereonemightexpecttheaggregate

arrivalprocessattheroutertorembleaPoissonprocess[4].

TheresultsareprentedinSectionIII.InappendixII,we

provideadditionalintuitionforthisresult:ifmanypacedflows

aresuperimpodafterarandomjitter,thenthepacketdrop

probabilityisassmallaswithPoissontraffic.

Thenextassumptionweattempttoremoveisthatof

1

Thisassumptionislessrestrictivethanitmightappear.CurrentTCP

implementationsusuallycapwindowsizesat32KBor64KB[10],andit

iswidelybelievedthatthereisnocongestioninthecoreoftheInternet.All

opticalnetworks,inparticular,arelikelytobesignificantlyover-provisioned.

Laterwewillrelaxthisassumption,too.

2

Forexample,wedonotneedtoassumetheTCPequation[12]oraggregate

Poissonarrivals[14]—hencewedonotrelyonthesimplifyingassumptions

aboutTCPdynamicsandaboutalargenumberofflowsthatarerequiredfor

thetworesults.

Poisson-transmissionsanalysis.Whilewehavenotbeenable

ca,someanalyticalintuitioncanalsobeobtained:ifwe

assumethattheTCPequation[12]holdsandthattherouter

queuefollowstheM/M/1/Bdynamics,thenbuffersofsize

O(logW)sufficetoutilizeaconstantfractionofthelink

max

capacity.

Ourresultsarequalitativelydifferentfromthebandwidth-

delayrule-of-thumborfromtheresultsofAppenzelleret

al.Onthepositiveside,wehavecompletelyremovedthe

dependenceofthebuffersizeonthebandwidth-delayproduct.

Tounderstandtheimportanceofthis,considerthescaling

wheretheRTTisheldfixedatτ,butthemaximumwindow

sizeW,thenumberofflowsN,andthecapacityCall

max

gotosuchthatC=NW.Thisisaveryreasonable

max

scalingsinceτislimitedbythespeedoflight,whereasC,N,

andWareallexpectedtokeepgrowingasInternettraffic

max

scales.Underthisscaling,thesizingruleofAppenzelleret

al.suggeststhatthebuffersizeshouldgrowas

NW,

max

whereasourresultssuggestthatthebuffersizeneedstogrow

onlyatthemorebenignrateoflogW.Onthenegative

max

side,unliketheresultofAppenzelleretal.,ourresultisa

tradeoffresult—toobtainthislargedecreainbuffers,we

havetosacrificesomefixedfraction(sayaround25%)of

linkcapacity.Thismightbeagoodtradeoffforanall-optical

networkrouterswherebandwidthisplentifulandbuffersare

scarce.Butforelectronicrouters,thistrade-offmightnotmake

n.

Wegiveevidencethatourresultistightinthefollowing

n.

1)Underthescalingdescribedabove,buffersmustatleast

growinproportiontologWtoobtainaconstant

max

factorlinkutilization.InSectionIV-A,weprent

simulationevidencethatconstantsizedbuffersarenot

adequateasthemaximumwindowsizegrowstoinfinity.

Wealsoperformasimplecalculationwhichshowsthe

necessityofthelog-scalingassumingtheTCPequation

andM/M/1/Bqueueing.

2)WhenwerunsimulationswithoutusingPacedTCP,we

cannotobtainreasonablelinkutilizationswithlog-sized

buffers,evenintheover-provisionedca(SectionIII).

WhileTCPpacingisarguablyasmallpricetopayfor

drasticreductioninbuffersizes,itdoesrequireachangeto

end-hosts.Fortunately,wesuspectthisisnotnecessary,as

twoeffectsnaturallyprovidesomepacingincurrentnetworks.

First,theaccesslinksaretypicallymuchslowerthanthecore

links,andsotrafficenteringthecorefromaccesslinksis

automaticallypaced;wecallthisphenomenon“link-pacing”.

Weprentsimulationsshowingthatwithlink-pacingweonly

needverysmallbuffers,becaupacketsarespacedenough

bythenetwork.Second,theACK-clockingschemeofTCP

STANFORDHPNGTECHNICALREPORTTR05-HPNG-0606063

pacespackets[2].Thefullimpactofthetwophenomena

dervesfurtherstudy.

Otherinterestingdirectionsforfurtherstudyincludethe

impactofpacketsizes,theinteractionofswitchscheduling

algorithmsandsmallbuffers,theimpactofshortflows,and

thestabilitypropertiesofTCPwithourlog-scalingrule.

(Significantprogressinanalyzingstabilitywasmaderecently

byRainaandWischik[14].)

Ofcour,significantadditionalwork—includingexperi-

mentalverification,moredetailedanalysis,andlargersim-

ulationstudies—isrequiredbeforeweundertakeadrastic

reductioninbuffersizesinthecurrentInternet.

II.I:P

NTUITIONOISSONINJECTIONSANDAN

OVERPROVISIONEDNETWORK

-

Theintuitionbehindourapproachisquitesimple.Imagine

foramomentthateachflowisanindependentPoissonprocess.

Thisisclearlyanunrealistic(andincorrect)assumption,butit

rvestoillustratetheintuition.Assumetoothateachrouter

behaveslikeanM/M/1queue.Thedrop-ratewouldbeρ,

B

whereρisthelinkutilizationandBisthebuffersize.At

75%loadandwith20packetbuffers,thedropratewouldbe

0.3%,independentoftheRTT,numberofflows,andlink-

rate.Thisshouldbecomparedwithatypical10Gb/srouter

line-cardtodaythatmaintains1,000,000packetbuffers,and

itsbuffersizeisdictatedbytheRTT,numberofflowsand

link-rate.Inesnce,thecostofnothavingPoissonarrivalsis

aboutfiveordersofmagnitudemorebuffering!Aninteresting

questionis:How“Poisson-like”dotheflowsneedtobein

ordertoreapmostofthebenefitofverysmallbuffers?

Toanswerourquestion,assumeNlong-livedTCPflows

shareabottlenecklink.Flowihastime-varyingwindowsize

W(t)andfollowsTCP’sAIMDdynamics.Inotherwords

i

ifthesourcereceivesanACKattimet,itwillincreathe

windowsizeby1/W(t),andiftheflowdetectsapacketloss

i

itwilldecreathecongestionwindowbyafactoroftwo.

Inanytimeinterval(t,t]whenthecongestionwindowsize

󰀁

isfixed,thesourcewillndpacketsasaPoissonprocessat

rateW(t)/RTT.NotethatthisisdifferentfromregularTCP,

i

whichtypicallyndspacketsasaburstatthestartofthe

window.

WewillassumethatthewindowsizeisboundedbyW.

max

Implementationstodaytypicallyhaveaboundimpodbythe

operatingsystem(LinuxdefaultstoW=64kbytes),orthe

max

windowsizeislimitedbythespeedoftheaccesslink.We’ll

makethesimplifyingassumptionthatthetwo-waypropagation

delayofeachflowisRTT.Havingadifferentpropagation

delayforeachflowleadstothesameresults,buttheanalysis

ismorecomplicated.ThecapacityCofthesharedlinkis

assumedtobeatleast(1)·NW/RTTwhereρissome

max

constantlessthan1.Hence,thenetworkisover-provisioned

byafactorof1,i.e.thepeakthroughputisρC.Theeffective

utilization,θ,isdefinedastheachievedthroughputdividedby

ρC.

Inthisscenario,thefollowingtheoremholds:

Theorem1:Toachieveaneffectiveutilizationofθ,afactorslowerthanthatofthebottlenecklink,aPoisson-like

bufferofsize

󰀇

󰀁

Blog(1)

W

1

max

2

2(1θ)

suffices.

Proof:SeeAppendixI.

Asanexampleoftheconquencesofthissimplemodel,

ifW=64packets,ρ=0.5,andwewantaneffective

max

utilizationof90%,weneedabuffersizeof15packets

regardlessofthelinkcapacity.Inotherwords,theAIMD

dynamicsofTCPdon’tnecessarilyforceustoularger

buffers,ifthearrivalsarewell-behavedandnon-bursty.So

whathappensifwemakethemodelmorerealistic?Inthe

nextctionweconsiderwhathappensifinsteadofinjecting

packetsaccordingtoaPoissonprocess,eachsourceusPaced

TCPinwhichpacketsarespreaduniformlythroughoutthe

window.

III.PTCP,-

ACEDOVERPROVISIONEDNETWORK

Itshouldcomeasnosurprithatwecanuverysmall

bufferswhenarrivalsarePoisson:arrivalstotherouterare

benignandnon-bursty.Queuestendtobuildup—andhence

weneedlargerbuffers—whenlargeburstsarrive,suchas

whenaTCPsourcendsallofitsoutstandingpacketsat

thestartofthecongestionwindow.Butwecanpreventthis

fromhappeningifwemakethesourcespreadthepacketsover

thewholewindow.Intuitively,thismodificationshouldprevent

burstsandhenceremovetheneedforlargebuffers.Wenow

showthatthisisindeedtheca.Throughoutthisction,we

assumethatthebottlenecklinkisover-provisionedinthesame

nasinthepreviousction.Inthenextctionweremove

thisassumption.

First,suppoNflows,eachwithmaximumwindowsize

W,shareabottlenecklink.Thenthefollowingistrue,

max

undersomemildassumptions(laidoutinappendixII):

Theorem2:Thepacketlossprobabilityduringasin-

gleRTTisO(1/W),if(1)Thebuffersizeisatleast

2

cWlogpackets,wherec>0isasufficientlylarge

max

BmaxB

constant;and(2)Eachflowndspacketsatarateatmost

a1/clogWfractiontimesthatofthebottlenecklink,

Smax

wherecisasufficientlylargeconstant.

S

Proof:SeeAppendixII.

ThebuffersizerequirementforTheorem2(Assumption(1))

iscomparabletothatinTheorem1—afewdozenpackets

forprent-daywindowsizes,independentofthelinkca-

pacity,numberofflows,andRTT.Thisrequirementappears

tobenecessarytoachieveconstantthroughput,evenwith

PacedTCP(eSectionIV-A).Thepacketlossprobability

inTheorem2iscomparabletothatforPoissontrafficwith

thesamebuffersize.Tounderstandthecondassumptionof

Theorem2,notethatifflowscanndatthesamerateasthe

bottlenecklink,thenthereisnopacingoftrafficwhatsoever.

Inthisca,oursimulationsindicatethatconstantthroughput

isnotachievablewithlog-sizedbuffers.Thenaturalgoalis

thustoobtaingoodthroughputwithsmallbuffersprovided

flowsare“sufficientlynon-bursty”.Theorem2quantifiesthis:

aslongasallflowsndataratethatisroughlyalogW

max

STANFORDHPNGTECHNICALREPORTTR05-HPNG-0606064

throughput-buffersizetradeoffisachievable.Thisslowdown3.2Mb/sto3.4Gb/stokeepthepeakloadat80%.Thebuffer

factorisonlyafewdozenforprent-daywindowsizes,sizeisstilltto10packets.Thegraphshowsthatregardless

whileaccesslinksareoftenordersofmagnitudeslowerofthenumberofflows,throughputisimprovedbyPacedTCP.

thanbackbonelinks.ThishugedifferenceinaccesslinkandThethroughputofPacedTCPisaround70%(i.e.,theeffective

backbonelinkspeedsalsoemslikelytopersistinthenearutilizationismorethan85%)whilethethroughputoftheTCP

future(especiallywithanall-opticalbackbone).Renoisaround20%(withaneffectiveutilizationofaround

ToexplorethevalidityofTheorem2,weperformed

simulationsusingthepopularns2simulationtool[1].We

implementedPacedTCPandudvariousvaluesofRTT,

differentnumberofflows,andbuffersizes.

InFigure1wecomparethenumberofbuffersneededby

TCPRenowithPacedTCP.Weplotthethroughputofthe

systemasfunctionofthebuffersizeudintherouter,for

variousnumberofflows.Thecapacityofthebottlenecklinkis

100Mb/s,andtheaverageRTTis100ms.Inthisexperiment,

themaximumcongestionwindowsizeistto32packets,

andthesizeofpacketsis1,000bytes.Thesimulationisrun

for1,000conds,andwestartrecordingthedataafter200

conds.

Aswecane,with40unmodifiedTCP(Reno)flows,we

needtobufferabout100packetstoachieveathroughputabove

80%.However,inthesametting,PacedTCPachieves80%

throughputwithjust10packetbuffers.

Figure2comparesthecongestionwindow(CWND)of

TCPRenowithPacedTCP.Inthisexperiment,500flowsshare

abottlenecklinkwithacapacityof1.5Gb/s;thebuffersizeis

10packets;andeachflowislimitedtoamaximumwindow

sizeof32packets.NoticethatTCPRenorarelyreachesthe

3

maximumwindowsizeof32packets,whereasPacedTCPhas

alargercongestionwindowatalmostalltimes.PacedTCP

flowsexperiencefewerdrops,andsoCWND

growstolarger

values.

120

TCP−Reno

Paced TCP

100

80

_

D

N

W

60

C

40

20

0

0102030405060708090100

Time

Fig.2.Congestionwindowsize(TCPRenovs.PacedTCP)

InFigure1weincreadthesystemloadasweincread

thenumberofflows.It’salsointerestingtoewhathappens

ifwekeepthesystemloadconstant(at80%inthisca)while

increasingthenumberofflows.ThisisillustratedinFigure3,

forflowswithamaximumcongestionwindowof32packets.

Asweincreathenumberofflowsfromonetomorethana

thousand,wealsoincreathebottlenecklinkcapacityfrom

3

NotethatevenifCWNDismorethan32,thesourcedoesn’tallowmore

than32un-acknowledgedpackets.

25%)regardlessofthenumberofflowsinthesystem.

1

Paced TCP

0.9

TCP Reno

0.8

0.7

t

0.6

u

p

h

g

u

o

0.5

r

h

T

0.4

0.3

0.2

0.1

0

1002003004005006007008009001000

Number of flows

Fig.3.PacedTCPvs.TCPReno.

Itisimportanttonotethatthissignificantdiscrepancy

betweenpacedandregularTCPisobrvedonlywithsmall

buffers.Ifweuthebandwidth-delayruleforsizingbuffers,

thisdiscrepancyvanishes.

IV.U-,

NDERPROVISIONEDNETWORKLIMITEDACCESS

LINKCAPACITY

Sofarwehaveassumedthatthenetworkisover-provisioned

andwedonothavecongestiononthelinkunderstudy.Even

thoughthisistrueformostlinksinthecoreoftheInternet,

itisalsointerestingtorelaxthisassumption.Wenextstudy,

viasimulations,howcongestionaffectslinkutilization.

WerepeatanexperimentsimilartothatdepictedinFigure1.

However,weincreathenumberofflowstoupto100.The

averageRTTis100ms,andthemaximumwindowsizeis32

packets.Eachpacketis1000bytes,whichmeanseachflow

cancontributealoadof3210008/0.1󰀇2.5Mb/s.The

capacityofthecorelinkis100Mb/s,whichmeanifwehave

morethan40flows,thecorelinkwillbecomecongested.

Figure4showsthethroughputofthebottlenecklinkasa

functionofthebuffersizeforvariousnumberofflows.Wecan

ethatasweincreathenumberofflowsfrom20to40(at

whichpointthelinkstartstobesaturated)thethroughputgoes

fromaround50%toabout80-90%.Aswekeepincreasingthe

numberofflows,to100,and200flows,forsomebuffersizes

weeadegradationinthroughput,butthethroughputnever

goesbelow80%evenwhenthebuffersizeis10packets.

WehaveshownthatPacedTCPcangainaveryhigh

throughputevenwithverysmallbuffers.Averyinteresting

obrvationisthis:ifthecapacityoftheaccesslinksis

muchsmallerthanthecorelink,packetsenteringthecore

willautomaticallyhavespacingbetweenthemevenwithout

modifyingTCP.Wedidsomeexperimentstoverifyifthis

STANFORDHPNGTECHNICALREPORTTR05-HPNG-0606065

1

0.9

0.8

0.7

1

1 flow

10 flows

20 flows

40 flows

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

012

101010

1 flow

10 flows

20 flows

40 flows

T

h

r

o

u

g

h

p

u

t

0.5

0.4

0.3

0.2

0.1

0

0102030405060708090100

Buffer size (packets)

T

h

r

o

u

g

h

p

u

t

0.6

Buffer size (packets)

(a)(b)

1

0.9

0.8

0.7

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

012

101010

1 flow

10 flows

20 flows

40 flows

1 flow

10 flows

20 flows

40 flows

T

h

r

o

u

g

h

p

u

t

0.5

0.4

0.3

0.2

0.1

0

0102030405060708090100

Buffer size (packets)

T

h

r

o

u

g

h

p

u

t

0.6

Buffer size (packets)

(c)(d)

Fig.1.Bottlenecklinkutilizationfordifferentbuffersizesandnumberofflows.(a)unmodifiedTCP(b)unmodifiedTCPwithlogarithmicx-axis(c)paced

TCP(d)pacedTCPwithlogarithmicx-axis.Themaximumpossibleofferedloadis0.026withoneflow,0.26with10flows,0.52with20flows,and1with

40flows.

spacingcanresultinthesamethroughputasPacedTCP.TheConsiderthescaling(describedintheintroduction)wherethe

corelinkbandwidthistto1Gb/s,andwevarythecapacityRTTisheldfixedatτ,butthemaximumwindowsizeW,

oftheaccesslinks.ThemaximumwindowsizeisverylargethenumberofflowsN,andthecapacityCallgoto.To

(tto10,000),andthebuffersizeistto10packets,andthecapturethefactthatthenetworkisunder-provisioned,wewill

averageRTTistto100ms.Figure5showsthatwestillgainassumethatC=i.e.thelinkcanonlysupporthalf

ahighutilizationeventhoughwearenotusingPacedTCP.

Here,thex-axisreprentsthecapacityoftheaccesslinks,

andthey-axisreprentsthethroughput.Wecanethatat

thebeginningthethroughputincreas(almost)linearlywith

accesslinkcapacity.Forexample,with100flows,thishappens

whentheaccesslinkcapacityisbelow8-9Mb/s.Notethatthe

normalizedthroughputiscloto100%inthiscasincethe

corelinkisnotthebottleneck.Asweincreatheaccesslink

capacity,thethroughputgraduallydecreas.Thisisbecau

welothenaturalspacingbetweenpacketsasthecapacity

ofaccesslinksisincread.

A.Thenecessityoflogarithmicscalingofbuffer-sizes

Wehavenotbeenabletoextendourproofoftheorem1to

thecawhenthenetworkisunder-provisioned.However,the1)AssumeC=.Foranyconstantα<1,thereex-

TCPequation[12]givesinterestinginsightsifweassumethatistsanotherconstantβsuchthatttingB=βlogW

therouterqueuecanbemodeledasanM/M/1/Bsystem[15].yieldsρ>α.Inotherwords,logarithmicbuffer-sizes

max

max

NW

2τ

max

thepeakrateofeachflow.Similarly,C=reprents

2NW

τ

theunder-provisionedca.

Letpbethedropprobability,andρthelinkutilization.

Clearly,ρ=RN/C,whereRistheaveragethroughputof

eachflow.Then,theTCPequationstates:

1313

R=+o(1/p)󰀇.(2)

τ2pτ2p

󰀆󰀆

TheM/M/1/Bassumptionyields[7]:

p=ρ󰀇ρ(3)

BB+1

1ρρ

B

1ρ1+ρ

Equations2,3immediatelyyieldthefollowing:

max

NW

2τ

max

STANFORDHPNGTECHNICALREPORTTR05-HPNG-0606066

1

0.9

0.8

0.7

t

u

p

h

0.6

g

u

o

r

h

T

0.5

0.4

0.3

20 Flows

0.2

40 Flows

100 Flows

200 Flows

0.1

10101010

0123

Buffer size (packets)

Fig.4.Bottlenecklinkutilizationvs.thebuffersize.Withonly40flowsthe

corelinkbecomessaturated,butevenifweincreathenumberupto200

flows,thethroughputdoesnotgobelow80%.

0.9

0.8

0.7

0.6

t

u

p

h

0.5

g

u

o

r

h

T

0.4

0.3

0.2

0.1

100 Flows

0

200 Flows

024681012141618

Access link bandwidth (Mb/s)

Fig.5.Throughputasafunctionofaccesslinkcapacity

sufficeforobtainingconstantlinkutilizationevenwhen

thenetworkisunder-provisioned.

2)AssumeC=.IfB=o(logW)thenρ=

2NW

max

max

o(1).Inotherwords,ifthebuffersizegrowsslowerthan

τ

logWthenthelinkutilizationdropsto0eveninthe

max

over-provisionedca.

Obtainingformalproofsoftheabovestatementsremains

aninterestingopenproblem.Simulationevidencesupports

theclaims,ascanbeeninFigure6whichdescribesthe

throughputforaconstantvs.alogarithmicsizedbuffer.For

thissimulationweareusingPacedTCP,Nisheldfixedat

10,Wvariesfrom10to1529,andCvariesasfollows:

max

Cischoninitiallysothatthepeakloadisconstantanda

littleover50%andthischoicedeterminestheinitialvaluefor

theratio;then,sincewefixNandRTT,Cvaries

C

NW

RTT

proportionallytoWkeepingtheaboveratioconstantas

max

max

inourtheoreticalmodeling.Thebuffersizeistto5packets

whenW=10.Thereafter,itincreasinproportionwith

max

logWforthelog-sized-bufferca,andremainsfixedat

max

5fortheconstantbufferca.Here,initiallythethroughput

isaround50%forbothbuffersizingschemes.However,theFirst,itemsthatTCPdynamicshaveverylittleeffecton

throughputfortheconstantsizedbufferdropssignificantlyasbuffer-sizing,andhencetheresultsshouldapplytoavery

C,Wincrea,whileforthelogarithmicsizedbufferthebroadclassoftraffic.Thisissurprising,andcountersthe

max

0.6

Constant buffer size

Logarithmic buffer size

0.55

0.5

n

0.45

o

i

t

a

z

i

l

i

t

U

0.4

0.35

0.3

0.25

05001000150020002500

Link bandwidth (Mb/s)

Fig.6.Constantvs.logarithmicbuffers

throughputremainsapproximatelythesame,justaspredicted

byourtheoreticalmodel.

V.C

ONCLUSIONS

Themainconclusion,ofcour,isthatourresultssuggest

packetbufferscanbemademuchsmaller;perhapsassmall

as10-20packets,ifwearepreparedtosacrificesomeofthe

linkcapacity.Itappearsfromsimulation-thoughwehavenot

beenabletoproveit-thatthebuffersizedictatesdirectlyhow

muchlinkcapacityislost,howevercongestedthenetworkis.

Forexample,a40Gb/slinkwith15packetbufferscouldbe

consideredtooperatelikea30Gb/slink.Thiscould,ofcour,

becompensatedbymakingtherouterrunfasterthanthelink-

rate,andsonotlothelinkcapacityatall.Inafuturenetwork

withabundantlinkcapacity,thiscouldbeaverygoodtradeoff:

Utinybufferssothatwecanprocesspacketsoptically.In

thepast,itwasreasonabletoassumethatpacketbufferswere

cheap,andlong-haullinkswereexpensiveandneededtobe

fullyutilized.Today,fast,largepacketbuffersarerelatively

painfultodesignanddeploy;whereaslinkcapacityisplentiful

anditiscommonforlinkstooperatewellbelowcapacity.This

isevenmoresoinanall-opticalnetworkwherepacketbuffers

areextremelycostlyandcapacityisabundant.

Thebuffer-sizewepropodependsonthemaximumwin-

dowsize.Today,defaultttingsinoperatingsystemslimit

windowsize,butthislimitationwillprobablygoawayover

time.However,evenifthemaximumwindowsizewereto

increaexponentiallywithtimeaccordingtosomeformof

”Moore’slaw”,thebuffersizewouldonlyneedtoincrea

linearlywithtime,whichisaverybenignscalinggivenrecent

technologytrends.

Ourresultsalsoassumethatpacketsaresufficientlyspaced

outtoavoidheavyburstsfromoneflow.Again,slowaccess

linkshelpmakethishappen.Butifthisisnottrue-for

example,whentwosupercomputerscommunicate-theTCP

nderscanbemodifiedtouPacedTCPinstead.

Ourresultsleadtosomeotherinterestingobrvations.

STANFORDHPNGTECHNICALREPORTTR05-HPNG-0606067

prevailingwisdom(andourownpriorassumption)thatbuffers

shouldbemadelargebecauofTCP’ssawtoothbehavior.

A

CKNOWLEDGEMENT

TheauthorswouldliketothankNedaBeheshti,Peter

Glynn,andDamonMosk-Aoyamaforhelpfuldiscussions.

ThisworkwassupportedunderDARPA/MTODOD-Naward

no.W911NF-04-0001/KK4118(LASORPROJECT)andthe

BufferSizingGrantno.W911NF-05-1-0224.Thethirdau-

thor’sworkwasalsosupportedbyanNSFcareergrantand

anAlfredP.Sloanfacultyfellowship,andthefifthauthor’s

workwasalsosupportedinpartbyONRgrantN00014-04-1-

0725.

R

EFERENCES

[1]Thenetworksimulator-ns-2./nsnam/ns/.

[2]A.Aggarwal,S.Savage,andT.Anderson.Understandingtheperfor-

manceofTCPpacing.InProceedingsoftheIEEEINFOCOM,pages

1157–1165,Tel-Aviv,Israel,March2000.

[3]G.Appenzeller,I.Keslassy,andN.McKeown.Sizingrouterbuffers.

InSIGCOMM’04,pages281–292,NewYork,NY,USA,2004.ACM

Press.

[4]J.Cao,W.Cleveland,D.Lin,andD.Sun.Internettraffictendsto

poissonandindependentastheloadincreas.Technicalreport,Bell

Labs,2001.

[5]V.Jacobson.[e2e]re:LatestTCPmeasurementsthoughts.Postingto

theend-to-endmailinglist,March7,1988.

[6]V.Jacobson.Congestionavoidanceandcontrol.ACMComputer

CommunicationsReview,pages314–329,Aug.1988.

[7]F.P.Kelly.Chapter3:QueueingNetworks,pages57–94.Wiley,

Chichester,1979.

[8]V.Lal,J.A.Summers,M.L.Masanovic,L.A.Coldren,andD.J.

Blumenthal.NovelcompactinPbadmonolithicwidely-tunablediffer-

entialMach-Zehnderinterferometerwavelengthconverterfor40Gbps

operation.InIndiumPhosphideandRelatedMaterials,Scotland,2005.

[9]M.L.Masanovic,V.Lal,J.S.Barton,E.J.Skogen,J.A.Sum-

mers,L.Rau,L.A.Coldren,andD.J.Blumenthal.Widely-tunable

monolithically-integratedall-opticalwavelengthconvertersinInP.Jour-

nalofLightwaveTehcnology,23(3),2005.

[10]Microsoft.TCP/IPandnbtconfigurationparametersforwindowsxp.

MicrosoftKnowledgeBaArticle-314053,November4,2003.

[11]R.MotwaniandP.Raghavan.RandomizedAlgorithms.Cambridge

UniversityPress,1995.

[12]J.Padhye,V.Firoiu,D.Towsley,andJ.Kuro.Modelingtcp

throughput:asimplemodelanditsempiricalvalidation.InSIGCOMM

’98,pages303–314,NewYork,NY,USA,1998.ACMPress.

[13]H.Park,E.F.Burmeister,S.Bjorlin,andJ.E.Bowers.40-gb/s

opticalbufferdesignandsimulations.InNumericalSimulationof

OptoelectronicDevices(NUSOD),2004.

[14]G.RainaandD.Wischik.Buffersizesforlarge

multiplexers:Tcpqueueingtheoryandinstabilityanalysis.

/staff/k

/Talks/.

[15]K.RamananandJ.Cao.Apoissonlimitforbufferoverflowprobabili-

ties.InINFOCOM,2002.

[16]C.VillamizarandC.Song.HighperformanceTCPinANSNET.ACM

ComputerCommunicationsReview,24(5):45–60,1994.

AI

PPENDIX

PMT

ROOFOFTHEAINHEOREM

Wewilluthetopologyoffigure7.Thecapacityofthesystemdropsthepacketbutthevirtualsystemdoesn’t,

sharedlink(v,w),whichisdenotedbyC,isassumedtobe

atleast(1)·NW/RTTwhereρissomeconstantless

max

than1.Hence,thenetworkisover-provisionedbyafactorof

1,i.e.thepeakthroughputisρC.Theeffectiveutilization,wecanconcludethatQ(t)>Q(t)(tisthetimeright

θ,isdefinedastheachievedthroughputdividedbyρC.Webeforethislastarrival),whichmeans[Q(t)Q(t)]

sd

11

sd

22

vw

C

sd

NN

Fig.7.Topology

alsoassumethatnodevisanoutputqueuedswitch,andhas

abuffersizeofB.

Theflowgoingthroughthelink(v,w)isthesuperposition

oftheNlong-livedTCPflows.Sincethepacketinjectionrate

ofthei-thflowisW(t)/RTT,itsflowinjectionisdominated

i

byaPoissonprocessofrateW/RTT.Morespecifically,

max

wecanconsideravirtualsysteminwhichflowihasan

injectionprocesswhichisPoissonandofrateW/RTT.We

max

cancouplethepacketinjectionprocessintherealsystem

andthisvirtualsystemsuchthatthepacketsinjectedbythe

realsystemareasubtofthepacketsinjectedbythevirtual

system.Therefore,theaggregateoftheNflowsisdominated

byaPoissonprocessofrateNW/RTT.

max

Now,letusconsidertheoutputqueueatnodev.Weassume

thisisadrop-tailqueue,andprovethefollowinglemma.

Lemma1:Thenumberofpacketdropsintherealsystem

islessthanorequaltothenumberofpacketdropsinthe

virtualsystem.

Proof:Atagivenpointoftimet,letusdenotethe

residualamountofdata(queueoccupancypluspartofthe

packetbeingrvedwhichhasnotleftthesystemyet)inthe

realsystemwithQ(t)andtheamountofdataresidinginthe

R

virtualsystemwithQ(t).Wealsodenotetheaccumulative

V

numberofpacketdropsfortherealsystembyD(t)andthe

R

numberofpacketdropsforthevirtualsystembyD(t).We

V

claimthatforanytimet,

[Q(t)Q(t)](D(t)D(t)).(4)

RVVR

+

Clearlythisistruewhenbothqueuesareemptyatthe

beginning.Nowweconsiderthefollowingcas:

1)Ifwehavenoarrivalandjusttimepass,therighthand

sidedoesnotchange,whilethelefthandsidecanonly

decreaorremainthesame.Thiscaalsoincludes

whenpacketsdeparteithersystem.

2)Ifwehavearrivalsordropsatbothqueuesatthesame

time,theinequalitystillholds.

3)Ifwehaveanarrivaltothevirtualsystem,andnoarrivals

totherealsystemnomatterifwehaveadropornot,

theLHSdoesn’tincrea,andtheRHSmightincrea,

whichmeanstheinequalitystillholds.

4)Ifwehaveanarrivaltobothofthequeuesandthereal

weconsidertwocas.If[Q(t)Q(t)]1,then

RV

+

bothsidesgodownbyoneunit.Otherwi,sincethe

realsystemdropsthepacketbutthevirtualonedoesn’t,

RV

RV

+

STANFORDHPNGTECHNICALREPORTTR05-HPNG-0606068

isstrictlygreaterthanzero,andthereforeD(t)isLetusconsideralongtimeintervaloflength,andletus

V

greaterthanD(t).Now,afterthearrivalandthedrop,denotethenumberofpacketsinjectedbythesourcesinthe

R

theLHSwillbecomezero,whiletheRHSisgreatervirtualsystemduringthisintervalwithP,andthenumber

thanorequaltozero.ofpacketdropsinthevirtualsystemduringthistimeinterval

Inallcastheinequalityholds.Now,since[Q(t)

R

Q(t)]isgreaterthanorequaltozero(bydefinition),our

V

+

inequalityistranslatedtoD(t)D(t).

VR

Sofarwehaveshownthatthenumberofpacketdropsin

thevirtualsystemismorethanthenumberofpacketdrops

intherealsystem.Thenextstepistoboundthenumberof

dropsinthevirtualsystem.Inthissystemthearrivalprocess

isPoisson.Ifweassumethatthepacketsareallofthesame

size,thervicetimewillbefixed.Therefore,wehavean

M/D/1queuewitharvicerateofC,andthearrivalrateof

ρC.

Lemma2:Thedropprobabilityofthevirtualsystemis

boundedabovebyρ.

B

Proof:ThequeueoccupancydistributionofanM/D/1

FCFSqueueingsystemisequaltothatofanM/D/1LCFS-PR

(last-comefirst-rvedwithpreemptiveresume)queue.This

isbecaubothqueueshavethesamearrivalprocess,are

workconrving,andhavethesamervicerate.Now,for

anyM/G/1LCFS-PRsystemthesteadystatequeueoccupancy

distributionisgeometricwithparameterρ.Therefore,thedrop

probabilityoftheM/G/1LCFS-PRsystemequalsρ,whichis

B

anupperboundonthedropprobabilityofthevirtualsystem.

Notethatthisisnotnecessarilyanupperboundonthe

packetdropprobabilityoftherealsystem.

Nowthatwehaveanupperboundonthepacketloss

probabilityofthevirtualsystem,thenextstepistofinda

lowerboundonthethroughputoftherealsystem.Without

lossofgenerality,weconsiderthedynamicsofoneofthe

flows,sayflownumberone.Forsimplicity,weassumethat

flowoneisincongestionavoidance,i.e.,duringeachRTT

thecongestionwindowsizeisincrementedbyoneifthereis

nopacketloss,andthecongestionwindowgoestozeroif

apacketlossisdetectedbythesource.Oncethecongestion

windowsizereachesitsmaximumvalue(i.e.W)itwill

max

remainfixed.

Area loss

Area loss

w

o

with overlap

without overlap

d

n

i

W

n

o

i

t

s

e

g

n

o

C

Time

Fig.8.Dynamicsofthecongestionwindow.

Figure8depictsanexampleofthechangesincongestion

windowsize.Theareaunderthecurveindicatesthetotal

amountofdatawhichhasbeenntbytheflow.Wecane

thatbyeachpacketlosssomeportionofthisareaislost,and

theamountoflossismaximizedwhentheoverlapbetween

thelostregionsisminimum.Weomitaformalproof.We

areignoringslow-startinthissystem.Itisnothardtoe

thatconsideringslow-startcanonlyleadtobetterbounds(i.e.CombiningEquations9,11,and13ifwewanttohavea

smallerbuffers)—again,weomittheformalproof.throughputofθ,wemerelyneedtoensure

v

withD.Chooanarbitrarilysmall󰀂>0.Asgoesto,

V

wehave:

󰀂

PrP>(1+󰀂)=o(1);(5)

NW

󰀃

v

max

RTT

and,

󰀂󰀃

PrP<(1󰀂)=o(1).(6)

NW

v

max

RTT

Sincetheprobabilityofeachpacketbeingdroppedisless

thanρ,usingEquation5,wecanboundthetotalnumberof

B

packetdropsDasfollows.

󰀂󰀃

PrD>(1+󰀂)=o(1).(7)

ρNW

B

V

max

RTT

BadonLemma1thenumberofpacketdropsinthevirtual

systemisnolessthanthenumberofpacketdropsinthereal

system(henceforthdenotedbyD).Therefore,wegetthe

R

following.

󰀂󰀃

ρNW

B

PrD>(1+󰀂)=o(1).(8)

R

max

RTT

Now,ifnoneoftheflowsintherealsystemencountered

anylossduringthetimeinterval,theamountofdatathat

couldhavebeenntduringthistime,U,canbebounded

T

belowasfollows.

󰀂󰀃

PrU<(1󰀂)=o(1).(9)

NW

T

max

RTT

Wewilllosomethroughputasaresultofpacketdrops

inthesystem.AswecaneinFigure8,themaximum

amountoflossoccurswhenthetrianglescorrespondingto

packetlosshavetheminimumoverlap.Therefore,wehave

2

U.(10)

DW

L

R

max

2

InEquation8wehaveboundedthenumberofpacketloss

intherealsystemwithahighprobability.Combiningthis

bound,withEquation10weget

󰀂󰀃

PrU>(1+󰀂)=o(1).(11)

ρNW

B3

L

max

2RTT

Now,ifwewanttoguaranteeaneffectiveutilization

throughputofθ,thefollowingequationmusthold.

UU

TL

ρC

θ.(12)

SinceρC=NW/RTT,weneedtosatisfy

max

UNW(1θ󰀂)/RTT.(13)

Lmax

STANFORDHPNGTECHNICALREPORTTR05-HPNG-0606069

(1+󰀂)ρNWNW(1θ󰀂)

B3

max

max

2RTTRTT

<,(14)

which,inturn,issatisfiedifthefollowingholds:

ρ<.(15)

B

2(1θO(󰀂))

W

2

max

Since󰀂isarbitrarilysmall,itissufficientforthebuffersize

Btosatisfy

󰀇󰀁

Blog,(16)

W

1

max

2

2(1θ)

whichisO(logW)sinceweassumedthatρ,θare

max

constantslessthan1.

AII

PPENDIX

PA

ACINGNALYSIS

InthisAppendixweproveTheorem2.Wewillconsider

thefollowingdiscrete-timemodelofthepacketarrivalsatthe

bottlelinklinkduringoneRTT.ThereareatotalM=C·RTT

timeslots,whereCisthebandwidthofthebottlenexklink.We

assumethatNflowswilleachndatmostWpackets,and

max

thatthereareatleastStimeslotsbetweenconcutivepacket

arrivalsofasingleflow.TheparameterScanbeinterpreted

asalowerboundontheratioofthebottlenecklinkspeedto

theaccesslinkspeed.NoteSisthecrucialparameterinthis

ction:whenSissmalltrafficcanbearbitrarilyburstyand

wecannotexpectgoodthroughputwithsmallbuffers(ealso

SectionIV-A).Wethusaimtoprovethatsmallbufferspermit

largethroughputprovidedSissufficientlylarge.Finally,we

assumethattheaveragetrafficintensityρ=NW/Mis

max

boundedbelow1.

Fortherestofthisction,weadoptthreeassumptions.

(1)Buffersaresufficientlylarge:BclogW,where

Bmax

c>0isasufficientlylargepositiveconstant.

B

(2)Thedistancebetweenconcutivepacketarrivalsofa

singleflowissufficientlylarge:SclogW,where

Smax

c>0isasufficientlylargepositiveconstant.

S

(3)Randomjitterpreventsapriorisynchronizationofthe

flows:flowstarttimesarepickedindependentlyand

uniformlyatrandomfromtheMtimeslots.

AsdiscusdinSectionIII,thefirsttwoassumptionsare

oftenreasonableandaremathematicallynecessaryforour

results.Thevalidityofthethirdassumptionislessclear,es-

peciallyintheprenceofpacketdrops,whichcouldincrea

thedegreeofsynchronizationamongflows.Oursimulations

inSectionIVindicate,however,thatouranalyticalbounds

remainvalidforlong-livedflowsthatexperiencepacketdrops.

OurproofofTheorem2willfocusonaparticular(butarbi-k{2,3,...,W}.Theneachflowcontributesatmostk

trary)packet.Ifthepacketarrivesduringtimeslott,thenthepacketstoI.Assumeforsimplicitythateachflowcontributes

probabilitythatitisdroppedisatmosttheprobabilitythatforeither0orkpacketstoI,withthelattereventoccurringwith

someintervalIoflcontiguoustimeslotsendingintimeslotprobabilityWS/M(sothatE[kX]ρl).(HereXisthe

t,therewereatleastl+Botherpacketarrivals.Ifthisevent

occurs,wewillsaythattheintervalIisoverpopulated.WeisatmostkX,whereX=inIX.)Amoreaccurate

willboundtheprobabilityofoverpopulation,asafunctionofanalysisthatpermitseachflowtocontributeanynumberof

theintervallengthl,viathefollowingquenceoflemmas.Wepacketsbetween0andktoI(withappropriateproabilities)

firststatethelemmas,thenshowhowtheyimplyTheorem2,

andfinallyproveeachofthelemmasinturn.

Thefirstlemmaupperboundstheoverpopulationprobabil-

ityforsmallintervals(oflengthatmostS).

Lemma3:Inthenotationabove,iflS,thenthe

probabilitythattheintervalIisoverpopulatedisatmost

e,wherec>0isapositiveconstantdependingonly

c(B+l)

onc.

B

Thecondlemmaconsidersintervalsofintermediatesize.

Lemma4:Inthenotationabove,ifSlSW,then

max

theprobabilitythattheintervalIisoverpopulatedisatmost

e,wherec>0isapositiveconstantdependingonlyon

cS

c.

S

Finally,weupperboundtheprobabilityofoverpopulation

inlargeintervals.

Lemma5:Inthenotationabove,iflSW,then

max

theprobabilitythattheintervalIisoverpopulatedisatmost

e,wherec>0ispositiveconstantdependingonly

cl/W

max

onc.

S

WenowshowhowLemmas3–5implyTheorem2.

ProofofTheorem2:Weconsideranarbitrarypacketarriving

intimeslott,andtaketheUnionBoundovertheover-

populationprobabilitiesofallintervalsthatconcludewith

timeslott.First,byLemma3,thetotaloverpopulation

probabilityforsmallintervals(lengthlatmostS)isat

mostdx,whichisO(1/We)provided

󰀅

S

Ω(logW+x)2

max

c(inAssumption(1))issufficientlylarge.Next,Lemma4

1

max

B

impliesthatthetotaloverpopulationprobabilityofintervals

withlengthlin[S,SW]isatmostSWe,which

maxmax

Ω(S)

isO(1/W)providedc(inAssumption(2))issufficiently

2

large.Finally,Lemma5impliesthatthetotaloverpopula-

max

S

tionprobabilityoflargeintervals(lSW)isatmost

󰀅

max

edx.Changingvariables(z=x/W),

Ω(x/W)

max

thisquantityequalsWedz,whichisO(1/W)

SW

max

max

󰀅

max

S

z2

csufficientlylarge.TakingtheUnionBoundprovidedis

max

S

overthethreetypesofintervals,weobtainanupperboundof

O(1/W)forthetotaloverpopulationprobability,andhence

max

2

fortheprobabilitythatthepacketisdropped.Thiscompletes

theproof.

ProofofLemma3:IfthelengthlofintervalIisatmost

S,theneachflowcontributesatmost1packettoI.This

occurswithprobabilityatmostWl/M.LetXdenote

maxi

thecorrespondingindicatorrandomvariableforflowi,and

󰀄

defineX=X.NotethatEXρl.Weuthe

i

followingChernoffbound(ee.g.[11])forasumofindicator

randomvariableswithexpectationµ:Pr[Xµ+λ]

exp{−(λ2)/(2µ+λ)}.Settingµ=ρlandλ=(1ρ)l+B,

wegetPr[Xl+B]exp{−(Θ(l)+B)2/(Θ(l)+B)}=

eforfixedρ<1.

Θ(l+B)

ProofofLemma4:Suppo(k1)SlkSforsome

max

maxi

indicatorforthelatterevent,sothetotalnumberofarrivals

󰀄

i

i

STANFORDHPNGTECHNICALREPORTTR05-HPNG-06060610

canalsobemade,buttheresultsarenearlyidenticaltotho

givenhere.

WeuthefollowingChernoffbound(ee.g.[11]):

Pr[X(1+β)µ]exp{−(β2µ)(2+β)}.Weareinterested

intheprobabilityPr[X(l+B)/k],whichwewillupper

boundbyPr[Xl/k].Sinceµρl/k,theChernoffbound

givesPr[Xl/k]exp{−Θ(l/k)}=eforfixed

Θ(S)

ρ<1.

ProofofLemma5:Theproofissimilartotheprevious

one.SuppothatlWSandassumethateachflow

max

icontributeseither0orWpacketstoI,thelatterevent

max

occurringwithprobabilityl/M.(SoE[WX]=ρl.)The

max

sameChernoffboundargumentasintheproofofLemma4

givesPr[WXl+B]eforfixedρ<1.

max

(Θ(l/W)

max

一言九鼎打一数字-最后的背影

Routers with Very Small Buffers_免费下载

本文发布于:2023-11-24 10:13:19,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/zhishi/a/1700791999224960.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

本文word下载地址:Routers with Very Small Buffers_免费下载.doc

本文 PDF 下载地址:Routers with Very Small Buffers_免费下载.pdf

标签:small
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 实用文体写作网旗下知识大全大全栏目是一个全百科类宝库! 优秀范文|法律文书|专利查询|