
STANFORDHPNGTECHNICALREPORTTR05-HPNG-0606061
RouterswithVerySmallBuffers
MihaelaEnachescu,YasharGanjali,AshishGoel,NickMcKeown,andTimRoughgarden
∗†‡†∗
∗
DepartmentofComputerScience,StanfordUniversity
{}
mihaela,timr@
†
DepartmentofElectricalEngineering,StanfordUniversity
{}
yganjali,nickm@
‡
DeptofManagementScienceandEngineering,StanfordUniversity
ashishg@
Abstract—Internetroutersrequirebufferstoholdpackets
duringtimesofcongestion.Thebuffersneedtobefast,and
soideallytheyshouldbesmallenoughtoufastmemory
technologiessuchasSRAMorall-opticalbuffering.Unfortu-
nately,awidelyudrule-of-thumbsaysweneedabandwidth-
delayproductofbufferingateachroutersoasnottololink
utilization.Thiscanbeprohibitivelylarge.Inarecentpaper,
Appenzelleretal.challengedthisrule-of-thumbandshowedthat
forabackbonenetwork,thebuffersizecanbedividedbyN
√
withoutsacrificingthroughput,whereNisthenumberofflows
sharingthebottleneck.Inthispaper,weexplorehowbuffersin
thebackbonecanbesignificantlyreducedevenmore,toaslittleas
afewdozenpackets,ifwearewillingtosacrificeasmallamount
oflinkcapacity.WearguethatiftheTCPsourcesarenotoverly
bursty,thenfewerthantwentypacketbuffersaresufficientfor
highthroughput.Specifically,wearguethatO(logW)buffersare
sufficient,whereWisthewindowsizeofeachflow.Wesupport
ourclaimwithanalysisandavarietyofsimulations.Thechange
weneedtomaketoTCPisminimal—eachnderjustneeds
topacepacketinjectionsfromitswindow.Moreover,thereis
someevidencethatsuchsmallbuffersaresufficientevenifwe
don’tmodifytheTCPsourcessolongastheaccessnetworkis
muchslowerthanthebackbone,whichistruetodayandlikely
toremaintrueinthefuture.
Weconcludethatbufferscanbemadesmallenoughforall-
opticalrouterswithsmallintegratedopticalbuffers.
I.MI
OTIVATIONANDNTRODUCTION
Untilquiterecently,Internetrouterswerewidelybelievedto
needlargebuffers.Commercialrouterstodayhavehugepacket
buffers,oftenstoringmillionsofpackets,undertheassumption
thatlargebuffersleadtogoodstatisticalmultiplexingand
henceefficientuofexpensivelong-haullinks.Awidely-ud
rule-of-thumbstatesthat,becauofthedynamicsofTCP’s
congestioncontrolmechanism,arouterneedsabandwidth-
delayproductofbuffering,B=RTT×C,inordertofully
utilizebottlenecklinks[5],[6],[16].Here,Cisthecapacityof
thebottlenecklink,Bisthesizeofthebufferinthebottleneck
router,andRTTistheaverageround-trippropagationdelayof
aTCPflowthroughthebottlenecklink.Recently,Appenzeller
etal.propodusingtheruleB=RTT×C/Ninstead,
√
whereNisthenumberofflowsthroughthebottleneck
link[3].Inabackbonenetworktoday,Nisofteninthe
thousandsorthetensofthousands,andsothesizingrule
B=RTT×C/Nresultsinsignificantlyfewerbuffers.
√
Inthispaper,weexploreifandhowwecouldbuildaWeassumethateachTCPflowdeterminesitswindowsize
networkwithmuchsmallerbuffersstill—perhapswithonlyusingthestandardTCPAIMDscheme.However,ifthecurrent
afewdozenpacketbuffersineachrouter,andperhapsatthe
expenof100%linkutilization.Whilethisisaninteresting
intellectualexerciinitsownright,therewouldbepractical
conquencesifitwerepossible.
First,itcouldfacilitatethebuildingofall-opticalrouters.
Withrecentadvances[8],[9],[13],itisnowpossibleto
performall-opticalswitching,openingthedoortorouterswith
hugecapacityandlowerpowerthanelectronicrouters.Recent
advancesintechnologymakepossibleopticalFCFSpacket
buffersthatcanholdafewdozenpacketsinanintegrated
opto-electronicchip[13].Largerall-opticalbuffersremain
infeasible,exceptwithunwieldyspoolsofopticalfiber(that
canonlyimplementdelaylines,nottrueFCFSpacketbuffers).
Weareinterestedinexploringthefeasibilityofanoperational
all-opticalnetworkwithjustafewdozenopticalpacketbuffers
ineachrouter.
Second,ifbigelectronicroutersrequiredonlyafewdozen
packetbuffers,itcouldreducetheircomplexity,makingthem
easiertobuildandeasiertoscale.Atypical10Gb/srouter
linecardtodaycontainsaboutonemillionpacketbuffers,using
manyexternalDRAMchips.TheboardspacetheDRAMs
occupy,thepinstheyrequire,andthepowertheydissipateall
limitthecapacityoftherouter[3].Ifafewdozenpacket
bufferssuffice,thenpacketbufferscouldbeincorporated
insidethenetworkprocessor(orASIC)inasmallon-chip
SRAM;infact,thebufferswouldonlyoccupyatinyportion
ofthechip.Notonlywouldexternalmemoriesberemoved,
butitwouldallowtheuoffaston-chipSRAM,whichscales
inspeedmuchfasterthanDRAM.
OurmainresultisthatminormodificationstoTCPwould
indeedallowustoreducebuffer-sizestodozensofpackets
withtheexpenofslightlyreducedlinkutilization.Weobtain
thisresultinasuccessionofsteps.Wewillstartbyadopting
twostrongassumptions:(1)Thatwecouldmodifytheway
packetsaretransmittedbyTCPnders,and(2)Thatthe
networkisover-provisioned.However,wewillsoonrelax
theassumptions.
Westartbyaskingthefollowingquestion:Whatifwe
kepttheAIMD(AdditiveIncreaMultiplicativeDecrea)
dynamicsofTCPwindowcontrol,butchangedtheTCP
transmissionschemeto“spaceout”packettransmissionsfrom
theTCPnder,therebymakingpacketarrivalslessbursty?
STANFORDHPNGTECHNICALREPORTTR05-HPNG-0606062
windowsizeattimetisWandthecurrentround-tripestimatethenetworkbeingover-provisioned.Weconsiderasingle
isRTT,thenweassumetheTCPnderndsaccordingtobottlenecklink,andassumethatifeachflowweretondat
aPoissonprocessofrateW/RTTattimet.Thisresultsinitsmaximumwindowsize,thenthelinkwouldbeverely
thesameaveragerateasndingWpacketsperRTT.Whilecongested.Inoursimulations(prentedinSectionIV),
thisisaslightlyunrealisticassumption(itcanresultinthePacedTCPresultsinhighthroughput(around70-80%)with
windowsizebeingviolatedandsomightalterTCPbehaviortherelativelysmallbuffers(10-20)predictedbythesimple
inundesirableways),thisscenarioyieldsimportantcluesabout
thefeasibilityofverysmallbuffers.toextendourformalanalysistotheunder-provisionednetwork
Wearealsogoingtoassumethatthenetworkisover-
provisioned—evenifeachflowisndingatitsmaximum
windowsize,thenetworkwillnotbecongested.Underthe
1
assumptions,weshowthatabuffersizeofO(logW)
max
packetsissufficienttoobtainclotopeakthroughput,where
Wisthemaximumwindowsizeinpackets.Someelements
max
oftheproofareinterestingintheirownright.Theexact
2
scenarioisexplainedinSectionIIandtheproofitlfisin
AppendixI.
Togetsomefeelforthenumbers,considerthescenario
where1000flowssharealinkofcapacity10Gbps.Assume
thateachflowhasanRTTof100ms,amaximumwindow
sizeof64KB,andapacketsizeof1KB.Thepeakrateis
roughly5Gbps.Thebandwidth-delayproductrule-of-thumb
suggestsabuffersizeof125MB,oraround125,000packets.
C/TheRTT×Nrulesuggestsabuffersizeofaround3950
√
packets.Ouranalysissuggestsabuffersizeoftwelvepackets
plussomesmalladditiveconstant,whichbringsthebuffersize
downtotherealmwhereopticalbufferscanbebuiltinthe
nearfuture.
Wethensystematicallyremovethetwoassumptionswe
madeabove,usingacombinationofsimulationsandanalysis.
WefirsttackletheassumptionthatTCPndspacketsina
locallyPoissonfashion.Intuitively,ndingpacketsatfixed
(ratherthanrandom)intervalsshouldgiveusthesamebenefit
(orbetter)asndingpacketsataPoissonrate.Accordingly,
westudythemorereasonablecawheretheTCPnding
agent“paces”itspacketsdeterministicallyoveranentire
RTT.PacedTCPhasbeenstudiedbefore[2],anddoesnot
sufferfromtheproblemofovershootingthewindowsize.
WeperformanextensivesimulationstudyofpacedTCP
withsmallbuffers.Whenthenetworkisover-provisioned,
theperformanceofpacedTCPclolymirrorsouranalytical
boundofO(logW)forPoissonsources.Thisholdsfor
max
awiderangeofcapacitiesandnumberofflows,andnot
justintheregimewhereonemightexpecttheaggregate
arrivalprocessattheroutertorembleaPoissonprocess[4].
TheresultsareprentedinSectionIII.InappendixII,we
provideadditionalintuitionforthisresult:ifmanypacedflows
aresuperimpodafterarandomjitter,thenthepacketdrop
probabilityisassmallaswithPoissontraffic.
Thenextassumptionweattempttoremoveisthatof
1
Thisassumptionislessrestrictivethanitmightappear.CurrentTCP
implementationsusuallycapwindowsizesat32KBor64KB[10],andit
iswidelybelievedthatthereisnocongestioninthecoreoftheInternet.All
opticalnetworks,inparticular,arelikelytobesignificantlyover-provisioned.
Laterwewillrelaxthisassumption,too.
2
Forexample,wedonotneedtoassumetheTCPequation[12]oraggregate
Poissonarrivals[14]—hencewedonotrelyonthesimplifyingassumptions
aboutTCPdynamicsandaboutalargenumberofflowsthatarerequiredfor
thetworesults.
Poisson-transmissionsanalysis.Whilewehavenotbeenable
ca,someanalyticalintuitioncanalsobeobtained:ifwe
assumethattheTCPequation[12]holdsandthattherouter
queuefollowstheM/M/1/Bdynamics,thenbuffersofsize
O(logW)sufficetoutilizeaconstantfractionofthelink
max
capacity.
Ourresultsarequalitativelydifferentfromthebandwidth-
delayrule-of-thumborfromtheresultsofAppenzelleret
al.Onthepositiveside,wehavecompletelyremovedthe
dependenceofthebuffersizeonthebandwidth-delayproduct.
Tounderstandtheimportanceofthis,considerthescaling
wheretheRTTisheldfixedatτ,butthemaximumwindow
sizeW,thenumberofflowsN,andthecapacityCall
max
goto∞suchthatC=NW/τ.Thisisaveryreasonable
max
scalingsinceτislimitedbythespeedoflight,whereasC,N,
andWareallexpectedtokeepgrowingasInternettraffic
max
scales.Underthisscaling,thesizingruleofAppenzelleret
al.suggeststhatthebuffersizeshouldgrowas
√
NW,
max
whereasourresultssuggestthatthebuffersizeneedstogrow
onlyatthemorebenignrateoflogW.Onthenegative
max
side,unliketheresultofAppenzelleretal.,ourresultisa
tradeoffresult—toobtainthislargedecreainbuffers,we
havetosacrificesomefixedfraction(sayaround25%)of
linkcapacity.Thismightbeagoodtradeoffforanall-optical
networkrouterswherebandwidthisplentifulandbuffersare
scarce.Butforelectronicrouters,thistrade-offmightnotmake
n.
Wegiveevidencethatourresultistightinthefollowing
n.
1)Underthescalingdescribedabove,buffersmustatleast
growinproportiontologWtoobtainaconstant
max
factorlinkutilization.InSectionIV-A,weprent
simulationevidencethatconstantsizedbuffersarenot
adequateasthemaximumwindowsizegrowstoinfinity.
Wealsoperformasimplecalculationwhichshowsthe
necessityofthelog-scalingassumingtheTCPequation
andM/M/1/Bqueueing.
2)WhenwerunsimulationswithoutusingPacedTCP,we
cannotobtainreasonablelinkutilizationswithlog-sized
buffers,evenintheover-provisionedca(SectionIII).
WhileTCPpacingisarguablyasmallpricetopayfor
drasticreductioninbuffersizes,itdoesrequireachangeto
end-hosts.Fortunately,wesuspectthisisnotnecessary,as
twoeffectsnaturallyprovidesomepacingincurrentnetworks.
First,theaccesslinksaretypicallymuchslowerthanthecore
links,andsotrafficenteringthecorefromaccesslinksis
automaticallypaced;wecallthisphenomenon“link-pacing”.
Weprentsimulationsshowingthatwithlink-pacingweonly
needverysmallbuffers,becaupacketsarespacedenough
bythenetwork.Second,theACK-clockingschemeofTCP
STANFORDHPNGTECHNICALREPORTTR05-HPNG-0606063
pacespackets[2].Thefullimpactofthetwophenomena
dervesfurtherstudy.
Otherinterestingdirectionsforfurtherstudyincludethe
impactofpacketsizes,theinteractionofswitchscheduling
algorithmsandsmallbuffers,theimpactofshortflows,and
thestabilitypropertiesofTCPwithourlog-scalingrule.
(Significantprogressinanalyzingstabilitywasmaderecently
byRainaandWischik[14].)
Ofcour,significantadditionalwork—includingexperi-
mentalverification,moredetailedanalysis,andlargersim-
ulationstudies—isrequiredbeforeweundertakeadrastic
reductioninbuffersizesinthecurrentInternet.
II.I:P
NTUITIONOISSONINJECTIONSANDAN
OVERPROVISIONEDNETWORK
-
Theintuitionbehindourapproachisquitesimple.Imagine
foramomentthateachflowisanindependentPoissonprocess.
Thisisclearlyanunrealistic(andincorrect)assumption,butit
rvestoillustratetheintuition.Assumetoothateachrouter
behaveslikeanM/M/1queue.Thedrop-ratewouldbeρ,
B
whereρisthelinkutilizationandBisthebuffersize.At
75%loadandwith20packetbuffers,thedropratewouldbe
0.3%,independentoftheRTT,numberofflows,andlink-
rate.Thisshouldbecomparedwithatypical10Gb/srouter
line-cardtodaythatmaintains1,000,000packetbuffers,and
itsbuffersizeisdictatedbytheRTT,numberofflowsand
link-rate.Inesnce,thecostofnothavingPoissonarrivalsis
aboutfiveordersofmagnitudemorebuffering!Aninteresting
questionis:How“Poisson-like”dotheflowsneedtobein
ordertoreapmostofthebenefitofverysmallbuffers?
Toanswerourquestion,assumeNlong-livedTCPflows
shareabottlenecklink.Flowihastime-varyingwindowsize
W(t)andfollowsTCP’sAIMDdynamics.Inotherwords
i
ifthesourcereceivesanACKattimet,itwillincreathe
windowsizeby1/W(t),andiftheflowdetectsapacketloss
i
itwilldecreathecongestionwindowbyafactoroftwo.
Inanytimeinterval(t,t]whenthecongestionwindowsize
isfixed,thesourcewillndpacketsasaPoissonprocessat
rateW(t)/RTT.NotethatthisisdifferentfromregularTCP,
i
whichtypicallyndspacketsasaburstatthestartofthe
window.
WewillassumethatthewindowsizeisboundedbyW.
max
Implementationstodaytypicallyhaveaboundimpodbythe
operatingsystem(LinuxdefaultstoW=64kbytes),orthe
max
windowsizeislimitedbythespeedoftheaccesslink.We’ll
makethesimplifyingassumptionthatthetwo-waypropagation
delayofeachflowisRTT.Havingadifferentpropagation
delayforeachflowleadstothesameresults,buttheanalysis
ismorecomplicated.ThecapacityCofthesharedlinkis
assumedtobeatleast(1/ρ)·NW/RTTwhereρissome
max
constantlessthan1.Hence,thenetworkisover-provisioned
byafactorof1/ρ,i.e.thepeakthroughputisρC.Theeffective
utilization,θ,isdefinedastheachievedthroughputdividedby
ρC.
Inthisscenario,thefollowingtheoremholds:
Theorem1:Toachieveaneffectiveutilizationofθ,afactorslowerthanthatofthebottlenecklink,aPoisson-like
bufferofsize
B≥log(1)
W
1/ρ
max
2
2(1−θ)
suffices.
Proof:SeeAppendixI.
Asanexampleoftheconquencesofthissimplemodel,
ifW=64packets,ρ=0.5,andwewantaneffective
max
utilizationof90%,weneedabuffersizeof15packets
regardlessofthelinkcapacity.Inotherwords,theAIMD
dynamicsofTCPdon’tnecessarilyforceustoularger
buffers,ifthearrivalsarewell-behavedandnon-bursty.So
whathappensifwemakethemodelmorerealistic?Inthe
nextctionweconsiderwhathappensifinsteadofinjecting
packetsaccordingtoaPoissonprocess,eachsourceusPaced
TCPinwhichpacketsarespreaduniformlythroughoutthe
window.
III.PTCP,-
ACEDOVERPROVISIONEDNETWORK
Itshouldcomeasnosurprithatwecanuverysmall
bufferswhenarrivalsarePoisson:arrivalstotherouterare
benignandnon-bursty.Queuestendtobuildup—andhence
weneedlargerbuffers—whenlargeburstsarrive,suchas
whenaTCPsourcendsallofitsoutstandingpacketsat
thestartofthecongestionwindow.Butwecanpreventthis
fromhappeningifwemakethesourcespreadthepacketsover
thewholewindow.Intuitively,thismodificationshouldprevent
burstsandhenceremovetheneedforlargebuffers.Wenow
showthatthisisindeedtheca.Throughoutthisction,we
assumethatthebottlenecklinkisover-provisionedinthesame
nasinthepreviousction.Inthenextctionweremove
thisassumption.
First,suppoNflows,eachwithmaximumwindowsize
W,shareabottlenecklink.Thenthefollowingistrue,
max
undersomemildassumptions(laidoutinappendixII):
Theorem2:Thepacketlossprobabilityduringasin-
gleRTTisO(1/W),if(1)Thebuffersizeisatleast
2
cWlogpackets,wherec>0isasufficientlylarge
max
BmaxB
constant;and(2)Eachflowndspacketsatarateatmost
a1/clogWfractiontimesthatofthebottlenecklink,
Smax
wherecisasufficientlylargeconstant.
S
Proof:SeeAppendixII.
ThebuffersizerequirementforTheorem2(Assumption(1))
iscomparabletothatinTheorem1—afewdozenpackets
forprent-daywindowsizes,independentofthelinkca-
pacity,numberofflows,andRTT.Thisrequirementappears
tobenecessarytoachieveconstantthroughput,evenwith
PacedTCP(eSectionIV-A).Thepacketlossprobability
inTheorem2iscomparabletothatforPoissontrafficwith
thesamebuffersize.Tounderstandthecondassumptionof
Theorem2,notethatifflowscanndatthesamerateasthe
bottlenecklink,thenthereisnopacingoftrafficwhatsoever.
Inthisca,oursimulationsindicatethatconstantthroughput
isnotachievablewithlog-sizedbuffers.Thenaturalgoalis
thustoobtaingoodthroughputwithsmallbuffersprovided
flowsare“sufficientlynon-bursty”.Theorem2quantifiesthis:
aslongasallflowsndataratethatisroughlyalogW
max
STANFORDHPNGTECHNICALREPORTTR05-HPNG-0606064
throughput-buffersizetradeoffisachievable.Thisslowdown3.2Mb/sto3.4Gb/stokeepthepeakloadat80%.Thebuffer
factorisonlyafewdozenforprent-daywindowsizes,sizeisstilltto10packets.Thegraphshowsthatregardless
whileaccesslinksareoftenordersofmagnitudeslowerofthenumberofflows,throughputisimprovedbyPacedTCP.
thanbackbonelinks.ThishugedifferenceinaccesslinkandThethroughputofPacedTCPisaround70%(i.e.,theeffective
backbonelinkspeedsalsoemslikelytopersistinthenearutilizationismorethan85%)whilethethroughputoftheTCP
future(especiallywithanall-opticalbackbone).Renoisaround20%(withaneffectiveutilizationofaround
ToexplorethevalidityofTheorem2,weperformed
simulationsusingthepopularns2simulationtool[1].We
implementedPacedTCPandudvariousvaluesofRTT,
differentnumberofflows,andbuffersizes.
InFigure1wecomparethenumberofbuffersneededby
TCPRenowithPacedTCP.Weplotthethroughputofthe
systemasfunctionofthebuffersizeudintherouter,for
variousnumberofflows.Thecapacityofthebottlenecklinkis
100Mb/s,andtheaverageRTTis100ms.Inthisexperiment,
themaximumcongestionwindowsizeistto32packets,
andthesizeofpacketsis1,000bytes.Thesimulationisrun
for1,000conds,andwestartrecordingthedataafter200
conds.
Aswecane,with40unmodifiedTCP(Reno)flows,we
needtobufferabout100packetstoachieveathroughputabove
80%.However,inthesametting,PacedTCPachieves80%
throughputwithjust10packetbuffers.
Figure2comparesthecongestionwindow(CWND)of
TCPRenowithPacedTCP.Inthisexperiment,500flowsshare
abottlenecklinkwithacapacityof1.5Gb/s;thebuffersizeis
10packets;andeachflowislimitedtoamaximumwindow
sizeof32packets.NoticethatTCPRenorarelyreachesthe
3
maximumwindowsizeof32packets,whereasPacedTCPhas
alargercongestionwindowatalmostalltimes.PacedTCP
flowsexperiencefewerdrops,andsoCWND
growstolarger
values.
120
TCP−Reno
Paced TCP
100
80
_
D
N
W
60
C
40
20
0
0102030405060708090100
Time
Fig.2.Congestionwindowsize(TCPRenovs.PacedTCP)
InFigure1weincreadthesystemloadasweincread
thenumberofflows.It’salsointerestingtoewhathappens
ifwekeepthesystemloadconstant(at80%inthisca)while
increasingthenumberofflows.ThisisillustratedinFigure3,
forflowswithamaximumcongestionwindowof32packets.
Asweincreathenumberofflowsfromonetomorethana
thousand,wealsoincreathebottlenecklinkcapacityfrom
3
NotethatevenifCWNDismorethan32,thesourcedoesn’tallowmore
than32un-acknowledgedpackets.
25%)regardlessofthenumberofflowsinthesystem.
1
Paced TCP
0.9
TCP Reno
0.8
0.7
t
0.6
u
p
h
g
u
o
0.5
r
h
T
0.4
0.3
0.2
0.1
0
1002003004005006007008009001000
Number of flows
Fig.3.PacedTCPvs.TCPReno.
Itisimportanttonotethatthissignificantdiscrepancy
betweenpacedandregularTCPisobrvedonlywithsmall
buffers.Ifweuthebandwidth-delayruleforsizingbuffers,
thisdiscrepancyvanishes.
IV.U-,
NDERPROVISIONEDNETWORKLIMITEDACCESS
LINKCAPACITY
Sofarwehaveassumedthatthenetworkisover-provisioned
andwedonothavecongestiononthelinkunderstudy.Even
thoughthisistrueformostlinksinthecoreoftheInternet,
itisalsointerestingtorelaxthisassumption.Wenextstudy,
viasimulations,howcongestionaffectslinkutilization.
WerepeatanexperimentsimilartothatdepictedinFigure1.
However,weincreathenumberofflowstoupto100.The
averageRTTis100ms,andthemaximumwindowsizeis32
packets.Eachpacketis1000bytes,whichmeanseachflow
cancontributealoadof32∗1000∗8/0.12.5Mb/s.The
capacityofthecorelinkis100Mb/s,whichmeanifwehave
morethan40flows,thecorelinkwillbecomecongested.
Figure4showsthethroughputofthebottlenecklinkasa
functionofthebuffersizeforvariousnumberofflows.Wecan
ethatasweincreathenumberofflowsfrom20to40(at
whichpointthelinkstartstobesaturated)thethroughputgoes
fromaround50%toabout80-90%.Aswekeepincreasingthe
numberofflows,to100,and200flows,forsomebuffersizes
weeadegradationinthroughput,butthethroughputnever
goesbelow80%evenwhenthebuffersizeis10packets.
WehaveshownthatPacedTCPcangainaveryhigh
throughputevenwithverysmallbuffers.Averyinteresting
obrvationisthis:ifthecapacityoftheaccesslinksis
muchsmallerthanthecorelink,packetsenteringthecore
willautomaticallyhavespacingbetweenthemevenwithout
modifyingTCP.Wedidsomeexperimentstoverifyifthis
STANFORDHPNGTECHNICALREPORTTR05-HPNG-0606065
1
0.9
0.8
0.7
1
1 flow
10 flows
20 flows
40 flows
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
012
101010
1 flow
10 flows
20 flows
40 flows
T
h
r
o
u
g
h
p
u
t
0.5
0.4
0.3
0.2
0.1
0
0102030405060708090100
Buffer size (packets)
T
h
r
o
u
g
h
p
u
t
0.6
Buffer size (packets)
(a)(b)
1
0.9
0.8
0.7
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
012
101010
1 flow
10 flows
20 flows
40 flows
1 flow
10 flows
20 flows
40 flows
T
h
r
o
u
g
h
p
u
t
0.5
0.4
0.3
0.2
0.1
0
0102030405060708090100
Buffer size (packets)
T
h
r
o
u
g
h
p
u
t
0.6
Buffer size (packets)
(c)(d)
Fig.1.Bottlenecklinkutilizationfordifferentbuffersizesandnumberofflows.(a)unmodifiedTCP(b)unmodifiedTCPwithlogarithmicx-axis(c)paced
TCP(d)pacedTCPwithlogarithmicx-axis.Themaximumpossibleofferedloadis0.026withoneflow,0.26with10flows,0.52with20flows,and1with
40flows.
spacingcanresultinthesamethroughputasPacedTCP.TheConsiderthescaling(describedintheintroduction)wherethe
corelinkbandwidthistto1Gb/s,andwevarythecapacityRTTisheldfixedatτ,butthemaximumwindowsizeW,
oftheaccesslinks.ThemaximumwindowsizeisverylargethenumberofflowsN,andthecapacityCallgoto∞.To
(tto10,000),andthebuffersizeistto10packets,andthecapturethefactthatthenetworkisunder-provisioned,wewill
averageRTTistto100ms.Figure5showsthatwestillgainassumethatC=i.e.thelinkcanonlysupporthalf
ahighutilizationeventhoughwearenotusingPacedTCP.
Here,thex-axisreprentsthecapacityoftheaccesslinks,
andthey-axisreprentsthethroughput.Wecanethatat
thebeginningthethroughputincreas(almost)linearlywith
accesslinkcapacity.Forexample,with100flows,thishappens
whentheaccesslinkcapacityisbelow8-9Mb/s.Notethatthe
normalizedthroughputiscloto100%inthiscasincethe
corelinkisnotthebottleneck.Asweincreatheaccesslink
capacity,thethroughputgraduallydecreas.Thisisbecau
welothenaturalspacingbetweenpacketsasthecapacity
ofaccesslinksisincread.
A.Thenecessityoflogarithmicscalingofbuffer-sizes
Wehavenotbeenabletoextendourproofoftheorem1to
thecawhenthenetworkisunder-provisioned.However,the1)AssumeC=.Foranyconstantα<1,thereex-
TCPequation[12]givesinterestinginsightsifweassumethatistsanotherconstantβsuchthatttingB=βlogW
therouterqueuecanbemodeledasanM/M/1/Bsystem[15].yieldsρ>α.Inotherwords,logarithmicbuffer-sizes
max
max
NW
2τ
max
thepeakrateofeachflow.Similarly,C=reprents
2NW
τ
theunder-provisionedca.
Letpbethedropprobability,andρthelinkutilization.
Clearly,ρ=RN/C,whereRistheaveragethroughputof
eachflow.Then,theTCPequationstates:
1313
R=+o(1/p).(2)
τ2pτ2p
√
TheM/M/1/Bassumptionyields[7]:
p=ρρ(3)
BB+1
1−ρρ
B
1−ρ1+ρ
Equations2,3immediatelyyieldthefollowing:
max
NW
2τ
max
STANFORDHPNGTECHNICALREPORTTR05-HPNG-0606066
1
0.9
0.8
0.7
t
u
p
h
0.6
g
u
o
r
h
T
0.5
0.4
0.3
20 Flows
0.2
40 Flows
100 Flows
200 Flows
0.1
10101010
0123
Buffer size (packets)
Fig.4.Bottlenecklinkutilizationvs.thebuffersize.Withonly40flowsthe
corelinkbecomessaturated,butevenifweincreathenumberupto200
flows,thethroughputdoesnotgobelow80%.
0.9
0.8
0.7
0.6
t
u
p
h
0.5
g
u
o
r
h
T
0.4
0.3
0.2
0.1
100 Flows
0
200 Flows
024681012141618
Access link bandwidth (Mb/s)
Fig.5.Throughputasafunctionofaccesslinkcapacity
sufficeforobtainingconstantlinkutilizationevenwhen
thenetworkisunder-provisioned.
2)AssumeC=.IfB=o(logW)thenρ=
2NW
max
max
o(1).Inotherwords,ifthebuffersizegrowsslowerthan
τ
logWthenthelinkutilizationdropsto0eveninthe
max
over-provisionedca.
Obtainingformalproofsoftheabovestatementsremains
aninterestingopenproblem.Simulationevidencesupports
theclaims,ascanbeeninFigure6whichdescribesthe
throughputforaconstantvs.alogarithmicsizedbuffer.For
thissimulationweareusingPacedTCP,Nisheldfixedat
10,Wvariesfrom10to1529,andCvariesasfollows:
max
Cischoninitiallysothatthepeakloadisconstantanda
littleover50%andthischoicedeterminestheinitialvaluefor
theratio;then,sincewefixNandRTT,Cvaries
C
NW
RTT
proportionallytoWkeepingtheaboveratioconstantas
max
max
inourtheoreticalmodeling.Thebuffersizeistto5packets
whenW=10.Thereafter,itincreasinproportionwith
max
logWforthelog-sized-bufferca,andremainsfixedat
max
5fortheconstantbufferca.Here,initiallythethroughput
isaround50%forbothbuffersizingschemes.However,theFirst,itemsthatTCPdynamicshaveverylittleeffecton
throughputfortheconstantsizedbufferdropssignificantlyasbuffer-sizing,andhencetheresultsshouldapplytoavery
C,Wincrea,whileforthelogarithmicsizedbufferthebroadclassoftraffic.Thisissurprising,andcountersthe
max
0.6
Constant buffer size
Logarithmic buffer size
0.55
0.5
n
0.45
o
i
t
a
z
i
l
i
t
U
0.4
0.35
0.3
0.25
05001000150020002500
Link bandwidth (Mb/s)
Fig.6.Constantvs.logarithmicbuffers
throughputremainsapproximatelythesame,justaspredicted
byourtheoreticalmodel.
V.C
ONCLUSIONS
Themainconclusion,ofcour,isthatourresultssuggest
packetbufferscanbemademuchsmaller;perhapsassmall
as10-20packets,ifwearepreparedtosacrificesomeofthe
linkcapacity.Itappearsfromsimulation-thoughwehavenot
beenabletoproveit-thatthebuffersizedictatesdirectlyhow
muchlinkcapacityislost,howevercongestedthenetworkis.
Forexample,a40Gb/slinkwith15packetbufferscouldbe
consideredtooperatelikea30Gb/slink.Thiscould,ofcour,
becompensatedbymakingtherouterrunfasterthanthelink-
rate,andsonotlothelinkcapacityatall.Inafuturenetwork
withabundantlinkcapacity,thiscouldbeaverygoodtradeoff:
Utinybufferssothatwecanprocesspacketsoptically.In
thepast,itwasreasonabletoassumethatpacketbufferswere
cheap,andlong-haullinkswereexpensiveandneededtobe
fullyutilized.Today,fast,largepacketbuffersarerelatively
painfultodesignanddeploy;whereaslinkcapacityisplentiful
anditiscommonforlinkstooperatewellbelowcapacity.This
isevenmoresoinanall-opticalnetworkwherepacketbuffers
areextremelycostlyandcapacityisabundant.
Thebuffer-sizewepropodependsonthemaximumwin-
dowsize.Today,defaultttingsinoperatingsystemslimit
windowsize,butthislimitationwillprobablygoawayover
time.However,evenifthemaximumwindowsizewereto
increaexponentiallywithtimeaccordingtosomeformof
”Moore’slaw”,thebuffersizewouldonlyneedtoincrea
linearlywithtime,whichisaverybenignscalinggivenrecent
technologytrends.
Ourresultsalsoassumethatpacketsaresufficientlyspaced
outtoavoidheavyburstsfromoneflow.Again,slowaccess
linkshelpmakethishappen.Butifthisisnottrue-for
example,whentwosupercomputerscommunicate-theTCP
nderscanbemodifiedtouPacedTCPinstead.
Ourresultsleadtosomeotherinterestingobrvations.
STANFORDHPNGTECHNICALREPORTTR05-HPNG-0606067
prevailingwisdom(andourownpriorassumption)thatbuffers
shouldbemadelargebecauofTCP’ssawtoothbehavior.
A
CKNOWLEDGEMENT
TheauthorswouldliketothankNedaBeheshti,Peter
Glynn,andDamonMosk-Aoyamaforhelpfuldiscussions.
ThisworkwassupportedunderDARPA/MTODOD-Naward
no.W911NF-04-0001/KK4118(LASORPROJECT)andthe
BufferSizingGrantno.W911NF-05-1-0224.Thethirdau-
thor’sworkwasalsosupportedbyanNSFcareergrantand
anAlfredP.Sloanfacultyfellowship,andthefifthauthor’s
workwasalsosupportedinpartbyONRgrantN00014-04-1-
0725.
R
EFERENCES
[1]Thenetworksimulator-ns-2./nsnam/ns/.
[2]A.Aggarwal,S.Savage,andT.Anderson.Understandingtheperfor-
manceofTCPpacing.InProceedingsoftheIEEEINFOCOM,pages
1157–1165,Tel-Aviv,Israel,March2000.
[3]G.Appenzeller,I.Keslassy,andN.McKeown.Sizingrouterbuffers.
InSIGCOMM’04,pages281–292,NewYork,NY,USA,2004.ACM
Press.
[4]J.Cao,W.Cleveland,D.Lin,andD.Sun.Internettraffictendsto
poissonandindependentastheloadincreas.Technicalreport,Bell
Labs,2001.
[5]V.Jacobson.[e2e]re:LatestTCPmeasurementsthoughts.Postingto
theend-to-endmailinglist,March7,1988.
[6]V.Jacobson.Congestionavoidanceandcontrol.ACMComputer
CommunicationsReview,pages314–329,Aug.1988.
[7]F.P.Kelly.Chapter3:QueueingNetworks,pages57–94.Wiley,
Chichester,1979.
[8]V.Lal,J.A.Summers,M.L.Masanovic,L.A.Coldren,andD.J.
Blumenthal.NovelcompactinPbadmonolithicwidely-tunablediffer-
entialMach-Zehnderinterferometerwavelengthconverterfor40Gbps
operation.InIndiumPhosphideandRelatedMaterials,Scotland,2005.
[9]M.L.Masanovic,V.Lal,J.S.Barton,E.J.Skogen,J.A.Sum-
mers,L.Rau,L.A.Coldren,andD.J.Blumenthal.Widely-tunable
monolithically-integratedall-opticalwavelengthconvertersinInP.Jour-
nalofLightwaveTehcnology,23(3),2005.
[10]Microsoft.TCP/IPandnbtconfigurationparametersforwindowsxp.
MicrosoftKnowledgeBaArticle-314053,November4,2003.
[11]R.MotwaniandP.Raghavan.RandomizedAlgorithms.Cambridge
UniversityPress,1995.
[12]J.Padhye,V.Firoiu,D.Towsley,andJ.Kuro.Modelingtcp
throughput:asimplemodelanditsempiricalvalidation.InSIGCOMM
’98,pages303–314,NewYork,NY,USA,1998.ACMPress.
[13]H.Park,E.F.Burmeister,S.Bjorlin,andJ.E.Bowers.40-gb/s
opticalbufferdesignandsimulations.InNumericalSimulationof
OptoelectronicDevices(NUSOD),2004.
[14]G.RainaandD.Wischik.Buffersizesforlarge
multiplexers:Tcpqueueingtheoryandinstabilityanalysis.
/staff/k
/Talks/.
[15]K.RamananandJ.Cao.Apoissonlimitforbufferoverflowprobabili-
ties.InINFOCOM,2002.
[16]C.VillamizarandC.Song.HighperformanceTCPinANSNET.ACM
ComputerCommunicationsReview,24(5):45–60,1994.
AI
PPENDIX
PMT
ROOFOFTHEAINHEOREM
Wewilluthetopologyoffigure7.Thecapacityofthesystemdropsthepacketbutthevirtualsystemdoesn’t,
sharedlink(v,w),whichisdenotedbyC,isassumedtobe
atleast(1/ρ)·NW/RTTwhereρissomeconstantless
max
than1.Hence,thenetworkisover-provisionedbyafactorof
1/ρ,i.e.thepeakthroughputisρC.Theeffectiveutilization,wecanconcludethatQ(t)>Q(t)(tisthetimeright
θ,isdefinedastheachievedthroughputdividedbyρC.Webeforethislastarrival),whichmeans[Q(t)−Q(t)]
sd
11
sd
22
vw
C
sd
NN
Fig.7.Topology
alsoassumethatnodevisanoutputqueuedswitch,andhas
abuffersizeofB.
Theflowgoingthroughthelink(v,w)isthesuperposition
oftheNlong-livedTCPflows.Sincethepacketinjectionrate
ofthei-thflowisW(t)/RTT,itsflowinjectionisdominated
i
byaPoissonprocessofrateW/RTT.Morespecifically,
max
wecanconsideravirtualsysteminwhichflowihasan
injectionprocesswhichisPoissonandofrateW/RTT.We
max
cancouplethepacketinjectionprocessintherealsystem
andthisvirtualsystemsuchthatthepacketsinjectedbythe
realsystemareasubtofthepacketsinjectedbythevirtual
system.Therefore,theaggregateoftheNflowsisdominated
byaPoissonprocessofrateNW/RTT.
max
Now,letusconsidertheoutputqueueatnodev.Weassume
thisisadrop-tailqueue,andprovethefollowinglemma.
Lemma1:Thenumberofpacketdropsintherealsystem
islessthanorequaltothenumberofpacketdropsinthe
virtualsystem.
Proof:Atagivenpointoftimet,letusdenotethe
residualamountofdata(queueoccupancypluspartofthe
packetbeingrvedwhichhasnotleftthesystemyet)inthe
realsystemwithQ(t)andtheamountofdataresidinginthe
R
virtualsystemwithQ(t).Wealsodenotetheaccumulative
V
numberofpacketdropsfortherealsystembyD(t)andthe
R
numberofpacketdropsforthevirtualsystembyD(t).We
V
claimthatforanytimet,
[Q(t)−Q(t)]≤(D(t)−D(t)).(4)
RVVR
+
Clearlythisistruewhenbothqueuesareemptyatthe
beginning.Nowweconsiderthefollowingcas:
1)Ifwehavenoarrivalandjusttimepass,therighthand
sidedoesnotchange,whilethelefthandsidecanonly
decreaorremainthesame.Thiscaalsoincludes
whenpacketsdeparteithersystem.
2)Ifwehavearrivalsordropsatbothqueuesatthesame
time,theinequalitystillholds.
3)Ifwehaveanarrivaltothevirtualsystem,andnoarrivals
totherealsystemnomatterifwehaveadropornot,
theLHSdoesn’tincrea,andtheRHSmightincrea,
whichmeanstheinequalitystillholds.
4)Ifwehaveanarrivaltobothofthequeuesandthereal
weconsidertwocas.If[Q(t)−Q(t)]≥1,then
RV
+
bothsidesgodownbyoneunit.Otherwi,sincethe
realsystemdropsthepacketbutthevirtualonedoesn’t,
RV
RV
+
STANFORDHPNGTECHNICALREPORTTR05-HPNG-0606068
isstrictlygreaterthanzero,andthereforeD(t)isLetusconsideralongtimeintervaloflength∆,andletus
V
greaterthanD(t).Now,afterthearrivalandthedrop,denotethenumberofpacketsinjectedbythesourcesinthe
R
theLHSwillbecomezero,whiletheRHSisgreatervirtualsystemduringthisintervalwithP,andthenumber
thanorequaltozero.ofpacketdropsinthevirtualsystemduringthistimeinterval
Inallcastheinequalityholds.Now,since[Q(t)−
R
Q(t)]isgreaterthanorequaltozero(bydefinition),our
V
+
inequalityistranslatedtoD(t)≥D(t).
VR
Sofarwehaveshownthatthenumberofpacketdropsin
thevirtualsystemismorethanthenumberofpacketdrops
intherealsystem.Thenextstepistoboundthenumberof
dropsinthevirtualsystem.Inthissystemthearrivalprocess
isPoisson.Ifweassumethatthepacketsareallofthesame
size,thervicetimewillbefixed.Therefore,wehavean
M/D/1queuewitharvicerateofC,andthearrivalrateof
ρC.
Lemma2:Thedropprobabilityofthevirtualsystemis
boundedabovebyρ.
B
Proof:ThequeueoccupancydistributionofanM/D/1
FCFSqueueingsystemisequaltothatofanM/D/1LCFS-PR
(last-comefirst-rvedwithpreemptiveresume)queue.This
isbecaubothqueueshavethesamearrivalprocess,are
workconrving,andhavethesamervicerate.Now,for
anyM/G/1LCFS-PRsystemthesteadystatequeueoccupancy
distributionisgeometricwithparameterρ.Therefore,thedrop
probabilityoftheM/G/1LCFS-PRsystemequalsρ,whichis
B
anupperboundonthedropprobabilityofthevirtualsystem.
Notethatthisisnotnecessarilyanupperboundonthe
packetdropprobabilityoftherealsystem.
Nowthatwehaveanupperboundonthepacketloss
probabilityofthevirtualsystem,thenextstepistofinda
lowerboundonthethroughputoftherealsystem.Without
lossofgenerality,weconsiderthedynamicsofoneofthe
flows,sayflownumberone.Forsimplicity,weassumethat
flowoneisincongestionavoidance,i.e.,duringeachRTT
thecongestionwindowsizeisincrementedbyoneifthereis
nopacketloss,andthecongestionwindowgoestozeroif
apacketlossisdetectedbythesource.Oncethecongestion
windowsizereachesitsmaximumvalue(i.e.W)itwill
max
remainfixed.
Area loss
Area loss
w
o
with overlap
without overlap
d
n
i
W
n
o
i
t
s
e
g
n
o
C
Time
Fig.8.Dynamicsofthecongestionwindow.
Figure8depictsanexampleofthechangesincongestion
windowsize.Theareaunderthecurveindicatesthetotal
amountofdatawhichhasbeenntbytheflow.Wecane
thatbyeachpacketlosssomeportionofthisareaislost,and
theamountoflossismaximizedwhentheoverlapbetween
thelostregionsisminimum.Weomitaformalproof.We
areignoringslow-startinthissystem.Itisnothardtoe
thatconsideringslow-startcanonlyleadtobetterbounds(i.e.CombiningEquations9,11,and13ifwewanttohavea
smallerbuffers)—again,weomittheformalproof.throughputofθ,wemerelyneedtoensure
v
withD.Chooanarbitrarilysmall>0.As∆goesto∞,
V
wehave:
PrP>(1+)=o(1);(5)
∆NW
v
max
RTT
and,
PrP<(1−)=o(1).(6)
∆NW
v
max
RTT
Sincetheprobabilityofeachpacketbeingdroppedisless
thanρ,usingEquation5,wecanboundthetotalnumberof
B
packetdropsDasfollows.
PrD>(1+)=o(1).(7)
ρ∆NW
B
V
max
RTT
BadonLemma1thenumberofpacketdropsinthevirtual
systemisnolessthanthenumberofpacketdropsinthereal
system(henceforthdenotedbyD).Therefore,wegetthe
R
following.
ρ∆NW
B
PrD>(1+)=o(1).(8)
R
max
RTT
Now,ifnoneoftheflowsintherealsystemencountered
anylossduringthetimeinterval∆,theamountofdatathat
couldhavebeenntduringthistime,U,canbebounded
T
belowasfollows.
PrU<(1−)=o(1).(9)
∆NW
T
max
RTT
Wewilllosomethroughputasaresultofpacketdrops
inthesystem.AswecaneinFigure8,themaximum
amountoflossoccurswhenthetrianglescorrespondingto
packetlosshavetheminimumoverlap.Therefore,wehave
2
U≤.(10)
DW
L
R
max
2
InEquation8wehaveboundedthenumberofpacketloss
intherealsystemwithahighprobability.Combiningthis
bound,withEquation10weget
PrU>(1+)=o(1).(11)
ρ∆NW
B3
L
max
2RTT
Now,ifwewanttoguaranteeaneffectiveutilization
throughputofθ,thefollowingequationmusthold.
U−U
TL
ρC∆
≥θ.(12)
SinceρC=NW/RTT,weneedtosatisfy
max
U≤N∆W(1−θ−)/RTT.(13)
Lmax
STANFORDHPNGTECHNICALREPORTTR05-HPNG-0606069
(1+)ρ∆NW∆NW(1−θ−)
B3
max
max
2RTTRTT
<,(14)
which,inturn,issatisfiedifthefollowingholds:
ρ<.(15)
B
2(1−θ−O())
W
2
max
Sinceisarbitrarilysmall,itissufficientforthebuffersize
Btosatisfy
B≥log,(16)
W
1/ρ
max
2
2(1−θ)
whichisO(logW)sinceweassumedthatρ,θare
max
constantslessthan1.
AII
PPENDIX
PA
ACINGNALYSIS
InthisAppendixweproveTheorem2.Wewillconsider
thefollowingdiscrete-timemodelofthepacketarrivalsatthe
bottlelinklinkduringoneRTT.ThereareatotalM=C·RTT
timeslots,whereCisthebandwidthofthebottlenexklink.We
assumethatNflowswilleachndatmostWpackets,and
max
thatthereareatleastStimeslotsbetweenconcutivepacket
arrivalsofasingleflow.TheparameterScanbeinterpreted
asalowerboundontheratioofthebottlenecklinkspeedto
theaccesslinkspeed.NoteSisthecrucialparameterinthis
ction:whenSissmalltrafficcanbearbitrarilyburstyand
wecannotexpectgoodthroughputwithsmallbuffers(ealso
SectionIV-A).Wethusaimtoprovethatsmallbufferspermit
largethroughputprovidedSissufficientlylarge.Finally,we
assumethattheaveragetrafficintensityρ=NW/Mis
max
boundedbelow1.
Fortherestofthisction,weadoptthreeassumptions.
(1)Buffersaresufficientlylarge:B≥clogW,where
Bmax
c>0isasufficientlylargepositiveconstant.
B
(2)Thedistancebetweenconcutivepacketarrivalsofa
singleflowissufficientlylarge:S≥clogW,where
Smax
c>0isasufficientlylargepositiveconstant.
S
(3)Randomjitterpreventsapriorisynchronizationofthe
flows:flowstarttimesarepickedindependentlyand
uniformlyatrandomfromtheMtimeslots.
AsdiscusdinSectionIII,thefirsttwoassumptionsare
oftenreasonableandaremathematicallynecessaryforour
results.Thevalidityofthethirdassumptionislessclear,es-
peciallyintheprenceofpacketdrops,whichcouldincrea
thedegreeofsynchronizationamongflows.Oursimulations
inSectionIVindicate,however,thatouranalyticalbounds
remainvalidforlong-livedflowsthatexperiencepacketdrops.
OurproofofTheorem2willfocusonaparticular(butarbi-k∈{2,3,...,W}.Theneachflowcontributesatmostk
trary)packet.Ifthepacketarrivesduringtimeslott,thenthepacketstoI.Assumeforsimplicitythateachflowcontributes
probabilitythatitisdroppedisatmosttheprobabilitythatforeither0orkpacketstoI,withthelattereventoccurringwith
someintervalIoflcontiguoustimeslotsendingintimeslotprobabilityWS/M(sothatE[kX]≈ρl).(HereXisthe
t,therewereatleastl+Botherpacketarrivals.Ifthisevent
occurs,wewillsaythattheintervalIisoverpopulated.WeisatmostkX,whereX=inIX.)Amoreaccurate
willboundtheprobabilityofoverpopulation,asafunctionofanalysisthatpermitseachflowtocontributeanynumberof
theintervallengthl,viathefollowingquenceoflemmas.Wepacketsbetween0andktoI(withappropriateproabilities)
firststatethelemmas,thenshowhowtheyimplyTheorem2,
andfinallyproveeachofthelemmasinturn.
Thefirstlemmaupperboundstheoverpopulationprobabil-
ityforsmallintervals(oflengthatmostS).
Lemma3:Inthenotationabove,ifl≤S,thenthe
probabilitythattheintervalIisoverpopulatedisatmost
e,wherec>0isapositiveconstantdependingonly
−c(B+l)
onc.
B
Thecondlemmaconsidersintervalsofintermediatesize.
Lemma4:Inthenotationabove,ifS≤l≤SW,then
max
theprobabilitythattheintervalIisoverpopulatedisatmost
e,wherec>0isapositiveconstantdependingonlyon
−cS
c.
S
Finally,weupperboundtheprobabilityofoverpopulation
inlargeintervals.
Lemma5:Inthenotationabove,ifl≥SW,then
max
theprobabilitythattheintervalIisoverpopulatedisatmost
e,wherec>0ispositiveconstantdependingonly
−cl/W
max
onc.
S
WenowshowhowLemmas3–5implyTheorem2.
ProofofTheorem2:Weconsideranarbitrarypacketarriving
intimeslott,andtaketheUnionBoundovertheover-
populationprobabilitiesofallintervalsthatconcludewith
timeslott.First,byLemma3,thetotaloverpopulation
probabilityforsmallintervals(lengthlatmostS)isat
mostdx,whichisO(1/We)provided
S
−Ω(logW+x)2
max
c(inAssumption(1))issufficientlylarge.Next,Lemma4
1
max
B
impliesthatthetotaloverpopulationprobabilityofintervals
withlengthlin[S,SW]isatmostSWe,which
maxmax
−Ω(S)
isO(1/W)providedc(inAssumption(2))issufficiently
2
large.Finally,Lemma5impliesthatthetotaloverpopula-
max
S
tionprobabilityoflargeintervals(l≥SW)isatmost
∞
max
edx.Changingvariables(z=x/W),
−Ω(x/W)
max
thisquantityequalsWedz,whichisO(1/W)
SW
max
max
∞
max
S
−z2
csufficientlylarge.TakingtheUnionBoundprovidedis
max
S
overthethreetypesofintervals,weobtainanupperboundof
O(1/W)forthetotaloverpopulationprobability,andhence
max
2
fortheprobabilitythatthepacketisdropped.Thiscompletes
theproof.
ProofofLemma3:IfthelengthlofintervalIisatmost
S,theneachflowcontributesatmost1packettoI.This
occurswithprobabilityatmostWl/M.LetXdenote
maxi
thecorrespondingindicatorrandomvariableforflowi,and
defineX=X.NotethatEX≤ρl.Weuthe
i
followingChernoffbound(ee.g.[11])forasumofindicator
randomvariableswithexpectationµ:Pr[X≥µ+λ]≤
exp{−(λ2)/(2µ+λ)}.Settingµ=ρlandλ=(1−ρ)l+B,
wegetPr[X≥l+B]≤exp{−(Θ(l)+B)2/(Θ(l)+B)}=
eforfixedρ<1.
−Θ(l+B)
ProofofLemma4:Suppo(k−1)S≤l≤kSforsome
max
maxi
indicatorforthelatterevent,sothetotalnumberofarrivals
i
i
STANFORDHPNGTECHNICALREPORTTR05-HPNG-06060610
canalsobemade,buttheresultsarenearlyidenticaltotho
givenhere.
WeuthefollowingChernoffbound(ee.g.[11]):
Pr[X≥(1+β)µ]≤exp{−(β2µ)(2+β)}.Weareinterested
intheprobabilityPr[X≥(l+B)/k],whichwewillupper
boundbyPr[X≥l/k].Sinceµ≤ρl/k,theChernoffbound
givesPr[X≥l/k]≤exp{−Θ(l/k)}=eforfixed
−Θ(S)
ρ<1.
ProofofLemma5:Theproofissimilartotheprevious
one.Suppothatl≥WSandassumethateachflow
max
icontributeseither0orWpacketstoI,thelatterevent
max
occurringwithprobabilityl/M.(SoE[WX]=ρl.)The
max
sameChernoffboundargumentasintheproofofLemma4
givesPr[WX≥l+B]≤eforfixedρ<1.
max
−(Θ(l/W)
max

本文发布于:2023-11-24 10:13:19,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/zhishi/a/1700791999224960.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:Routers with Very Small Buffers_免费下载.doc
本文 PDF 下载地址:Routers with Very Small Buffers_免费下载.pdf
| 留言与评论(共有 0 条评论) |