中国数学发展的简单历史知识

更新时间:2023-11-01 05:34:31 阅读: 评论:0

abcc式的成语-未出土时先有节

中国数学发展的简单历史知识
2023年11月1日发(作者:情感问题)

中国数学发展的简单历史知识

有关中国数学发展的简单历史知识

中国古代是一个世界上数学先进的国家,用近代科目来分类的话,

可以看出无论在算术、代数、几何和三角各方面都十分发达。现在就

让我们来简单回顾一下初等数学在中国发展的历史。

(一)属于算术方面的材料

大约在3000年以前中国已经知道自然数的四则运算,这些运算只

是一些结果,被保存在古代的文字和典籍中。

乘除的运算规则在后来的“孙子算经”(公元三世纪)内有了详

细的记载。中国古代是用筹来计数的,在我们古代人民的计数中,己

利用了和我们现在相同的位率,用筹记数的方法是以纵的筹表示单位

数、百位数、万位数等;用横的筹表示十位数、千位数等,在运算过

程中也很明显的表现出来。“孙子算经”用十六字来表明它,“一从

十横,百立千僵,千十相望,万百相当。”

和古代国家一样,乘法表的产生在中国也很早。乘法表中国古代

叫九九,估计在2500年以前中国已有这个表,在那个时候人们便以九

九来代表数学。现在我们还能看到汉代遗留下来的木简(公元前一世

纪)上面写有九九的乘法口诀。

现有的史料指出,中国古代数学书“九章算术”(约公元一世纪

在算术中还应该提出由公元三世纪“孙子算经”的物不知数题发

展到宋朝秦九韶(公元1247年)的大衍求一术,这就是中国剩余定理,

相同的方法欧洲在十九世纪才进行研究。

宋朝杨辉所著的书中(公元1274年)有一个1300以内的因数

表,例如297用“三因加一损一”来代表,就是说297=3×11×9,

11101叫加一,9101叫损一)。杨辉还用“连身加”这

名词来说明201300以内的质数。

(二)属于代数方面的材料

从“九章算术”卷八说明方程以后,在数值代数的领域内中国一

直保持了光辉的成就。

“九章算术”方程章首先解释正负术是确切不移的,正象我们现

在学习初等代数时从正负数的四则运算学起一样,负数的出现便丰富

了数的内容。

我们古代的方程在公元前一世纪的时代已有多元方程组、一元二

次方程及不定方程几种。

一元二次方程是借用几何图形而得到证明。

不定方程的出现在二千多年前的中国是一个值得重视的课题,这

比我们现在所熟知的希腊丢番图方程要早三百多年。

具有x3+px2+qx=Ax3+px2=A形式的三次方程,中国在公元

七世纪的唐代王孝通“缉古算经”已有记载,用“从开立方除之”而

求出数字解答(可惜原解法失传了),不难王孝通得到这种解法时的

愉快程度,他说谁能改动他著作内的一个字可酬以千金。

十一世纪的贾宪已发明了和霍纳(17861837)方法相同的数

字方程解法,我们也不能忘记十三世纪中国数学家秦九韶在这方面的

伟大贡献。

在世界数学史上对方程的原始记载有着不同的形式,但比较起来

不得不推中国天元术的简洁明了。四元术是天元术发展的必然产物。

级数是古老的东西,二千多年前的“周髀算经”和“九章算术”

都谈到算术级数和几何级数。十四世纪初中国元代朱世杰的级数计算

应给予很高的评价,他的有些工作欧洲在十八、九世纪的著作内才有

记录。

十一世纪时代,中国已有完备的二项式系数表,并且还有这表的

编制方法。

历史文献揭示出在计算中有名的盈不足术是由中国传往欧洲的。

内插法的计算,中国可上溯到六世纪的刘焯,并且七世纪末的僧

一行有不等间距的内插法计算。

十四世纪以前,属于代数方面许多问题的研究,中国是先进国家

之一。

就是到十八,九世纪由李锐(17731817),汪莱(1768

1813)到李善兰(18111882),他们在这一方面的研究上也都发

表了很多的名著。

(三)属于几何方面的材料

自明朝后期(十六世纪)欧几里得“几何原本”中文译本一部分

出版之前,中国的几何早已在独立发展着。

应该重视古代的许多工艺品以及建筑工程、水利工程上的成就,

其中蕴藏了丰富的几何知识。

中国的几何有悠久的历史,可靠的记录从公元前十五世纪谈起,

甲骨文内己有规和矩二个字,规是用来画圆的,矩是用来画方的。

汉代石刻中矩的形状类似现在的直角三角形,大约在公元前二世

纪左右,中国已记载了有名的勾股定理(勾、股二个字的起源比较

迟)。

圆和方的研究在古代中国几何发展中占了重要位置。墨子对圆的

定义是:“圜,一中同长也。”—个中心到圜周相等的叫圜,这解释

要比欧几里得还早一百多年。

在圆周率的计算上有刘歆(?一23)、张衡(78139)、刘徽

263)、王蕃(219257)、祖冲之(429500)、赵友钦(公

元十三世纪)等人,其中刘徽、祖冲之、赵友钦的方法和所得的结果

举世闻名。

祖冲之所得的结果π=355/133要比欧洲早一千多年。

在刘徽的“九章算术”注中曾多次显露出他对极限概念的天才。

在平面几何中用直角三角形或正方形和在立体几何中用锥体和长

方柱体进行移补,这构成中国古代几何的特点。

中国数学家善子把代数上的.成就运用到几何上,而又用几何图形

来证明代数,数值代数和直观几何有机的配合起来,在实践中获得良

好的效果.

正好说明十八、九世纪中国数学家对割圜连比例的研究和项名达

17891850)用割圜连比例求出椭圆周长。这都是继承古代方法

加以发挥而得到的(当然吸收外来数学的精华也是必要的)。

(四)属于三角方面的材料

三角学的发生由干测量,首先是天文学的发展而产生了球面三角,

中国古代天文学很发达,因为要决定恒星的位置很早就有了球面测量

的知识;平面测量术在“周牌算经”内已记载若用矩来测量高深远近。

刘徽的割圆术以半径为单位长求圆内正六边形,十二二边形等的

每一边长,这答数是和2sinA的值相符(A是圆心角的一半),以后

公元十二世纪赵友钦用圆内正四边形起算也同此理,我们可以从刘徽、

赵友钦的计算中得出7.5o15o22.5o30o45o等的正弦函数值。

在古代历法中有计算二十四个节气的日晷影长,地面上直立一个

八尺长的“表”,太阳光对这“表”在地面上的射影由于地球公转而

每一个节气的影长都不同,这些影长和“八尺之表”的比,构成一个

余切函数表(不过当时还没有这个名称)。

十三世纪的中国天文学家郭守敬(12311316)曾发现了球面

三角上的三个公式。

现在我们所用三角函数名词:正弦,余弦,正切,余切,正割,

余割,这都是我国十六世纪已有的名称,那时再加正矢和余矢二个函

数叫做八线。

在十七世纪后期中国数学家梅文鼎(16331721)已编了一本

平面三角和一本球面三角的书,平面三角的书名叫“平三角举要”,

包含下列内容:(1)三角函数的定义;(2)解直角三角形和斜三角

形;(3)三角形求积,三角形内容圆和容方;(4)测量。这已经和

现代平面三角的内容相差不远,梅文鼎还著书讲到三角上有名的积化

和差公式。

十八世纪以后,中国还出版了不少三角学方面的书籍。

【有关中国数学发展的简单历史知识】

音乐之声雪绒花-智能图书馆

中国数学发展的简单历史知识

本文发布于:2023-11-01 05:34:31,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/zhishi/a/169878807178147.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

本文word下载地址:中国数学发展的简单历史知识.doc

本文 PDF 下载地址:中国数学发展的简单历史知识.pdf

标签:中国数学家
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 实用文体写作网旗下知识大全大全栏目是一个全百科类宝库! 优秀范文|法律文书|专利查询|